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Abstract

This PhD thesis, titled “Automated recommendation of multi-objective optimiza-
tion algorithms using a knowledge-based approach”, addresses the challenge of
developing a tool to provide algorithmic recommendation to end users (experts
in the problem domain but not experts in multi-objective algorithms) without
the need of a resource-intensive process of auto-configuration. This challenge is
faced with an approach based on previous knowledge about the problems.

A semantic model, moody, is designed to formally define knowledge in the
field of multi-objective optimization with metaheuristics, with a focus on the
relevant concepts required to characterize problems and the performance of al-
gorithms.

moorphology is developed as a tool to provide landscape characteristics of the
search and objective spaces of multi-objective problems. These landscape charac-
teristics are a key factor for the computation of a similarity metric between multi-
objective problems, which are a necessity to provide recommendations based on
previous knowledge.

To generate in an efficient way the required knowledge to implement the
recommendation engine, a meta-optimization approach is presented as the soft-
ware tool Evolver. This tool allows the automatic configuration of metaheuristics
by defining it as an optimization problem.

Large language models are evaluated for the task of helping domain ex-
perts in implementing their problems into an optimization framework for solving
them. To solve this problem, a large language model is fine-tuned and embedded
into a graphical tool, named moostral, to allow the end user to easily implement
their optimization framework into the recommendation system described in this
thesis.

To connect the previously mentioned elements, a recommendation engine,
named recommoonder, is implemented to solve the challenge presented in this
thesis.
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Finally, several future work lines are identified, such as: extending the se-
mantic model to support new metaheuristics, improving the similarity metric by
using machine learning or adapting the proposed auto-configuration process for
problems with unknown Pareto fronts. This thesis has a very practical focus, pro-
viding open source repositories for all the tools developed in it, allowing their
use for further research in the defined lines.



Resumen en espanol

Este capitulo proporciona una visiéon general de los principales campos explora-
dos en esta tesis doctoral, ofreciendo una visién general de la motivacion que
ha llevado a esta investigaciéon, junto con sus principales metas y objetivos. A
continuacién, se destacan las principales contribuciones de esta tesis doctoral a
los campos relacionados, ademads de esbozar la organizacion de los capitulos res-
tantes de la tesis. Por ultimo, se describen las conclusiones y los futuros trabajos
derivados de esta tesis, resumiendo los principales resultados y destacando su
relevancia en cada uno de los campos relacionados. Sobre los resultados y las
limitaciones identificadas, la atencién se centra a continuacion en las posibles
areas de investigacion futura.
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Antecedentes

La optimizacién ha sido una parte integral de como los humanos hemos resuelto
problemas durante siglos, incluso precediendo a las figuras historicas mas anti-
guas conocidas. Los problemas de optimizacién, que implican encontrar la mejor
solucién entre todas las soluciones factibles, se han abordado de diferentes for-
mas desde la antigiiedad. Por ejemplo, en la antigua Grecia, Euclides senté las
bases para la optimizacion geométrica al definir la distancia euclidea, que repre-
senta la distancia minima entre dos puntos en linea recta. Esta perspectiva de
Euclides se puede enmarcar como un problema de optimizacién donde el obje-
tivo es minimizar la distancia entre dos puntos. Al formularlo de esta manera,
se pueden aplicar técnicas matematicas para encontrar la soluciéon éptima, que
resulta ser la linea recta que conecta los dos puntos. Este concepto de optimiza-
cion, arraigado en los principios fundamentales de la geometria, ha trascendido
el tiempo y las disciplinas, convirtiéndose en un pilar en campos que van desde
las matematicas y la fisica hasta la ingenieria y la informatica.

Hasta la década de los ochenta del siglo XX, las técnicas de optimizacidn eran
principalmente métodos matemadticos cldsicos. La década de ochenta marcé un
giro significativo en el campo con el surgimiento de algoritmos evolutivos [28,
33]]. Estos algoritmos, inspirados en la evolucién bioldgica, fueron particular-
mente buenos para resolver problemas de optimizacién complejos que anterior-
mente eran intratables. Los algoritmos evolutivos representan técnicas estocas-
ticas que, si bien no garantizan la identificaciéon del éptimo global para los pro-
blemas, a menudo producen soluciones cuasiéptimas dentro de un periodo de
tiempo razonable. Notablemente, estos algoritmos no exigen necesariamente in-
formacién especifica del dominio sobre el problema que se estd optimizando para
generar aproximaciones robustas a la solucién éptima. Estas caracteristicas con-
tribuyen a su amplia adopcidn, convirtiéndolos en técnicas altamente utilizadas
en diversos dominios.

Durante la década de los noventa, los algoritmos evolutivos se convirtieron en
parte de una categoria mas amplia conocida como las metaheuristicas. Estas téc-
nicas de alto nivel operan mediante la manipulacién de métodos de nivel inferior,
normalmente heuristicas, para ofrecer algoritmos de optimizacién eficientes. Es-
ta integracion amplio el alcance de los enfoques de optimizacion, abarcando
diversos algoritmos, como la Optimizacion por Enjambre de Particulas (PSO), la
Optimizacién de Colonias de Hormigas (ACO), la Busqueda Tabu (TS), y mu-
chas otras [|17]. Durante las tultimas dos décadas, el enfoque de la investigacion
se ha intensificado en el estudio de problemas de optimizacién multiobjetivo y
su resolucion utilizando metaheuristicas. Estos problemas, frecuentemente en-
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contrados en aplicaciones de diversos dominios del mundo real, se caracterizan
por estar formulados en funcién de dos o mas objetivos conflictivos que deben
optimizarse simultdneamente. Esto implica que mejorar uno de ellos conduce a
un empeoramiento en el resto [45].

El desafio de la optimizacién multiobjetivo radica en navegar por la naturale-
za contradictoria de estos objetivos, donde la soluciéon 6ptima no es un unico re-
sultado sino un conjunto de soluciones de compromiso, conocido como conjunto
de Pareto. En este conjunto, ninguna solucion supera a otra en todos los obje-
tivos, y su correspondencia en el espacio objetivo es lo que se denomina frente
de Pareto. Cuando se aplican para resolver problemas multiobjetivo, las meta-
heuristicas tienen como objetivo encontrar una aproximacién precisa al frente
de Pareto.

El complejo panorama de la optimizacién estd, ademds, condicionado por el
teorema de No Free Lunch [160], que sostiene que no hay un algoritmo univer-
salmente éptimo para resolver todos los problemas de optimizaciéon dentro de
una clase. Esto implica que, cuando se enfrenta a un problema de optimizacién
especifico, no se puede determinar de antemano el algoritmo 6ptimo para abor-
darlo. La naturaleza intrincada de los detalles especificos del problema exige un
enfoque dindmico y adaptable para la seleccidn de algoritmos. Al mismo tiempo,
las metaheuristicas son extremadamente sensibles a los parametros de configu-
racién, dependiendo en gran medida del ajuste de pardmetros para aumentar la
efectividad de estas técnicas. Esto requiere una comprension profunda del campo
y, lo que es mas importante, del algoritmo especifico utilizado.

Los usuarios finales (bidlogos, ingenieros, economistas, etc.) que necesitan
optimizar problemas multiobjetivo no suelen ser expertos en metaheuristicas,
y suelen utilizar la configuraciéon predeterminada de un algoritmo popular sin
ajustar sus parametros a su problema del mundo real. Por lo tanto, un area de
investigacion actual y activa implica el desarrollo de herramientas que permi-
tan a estos usuarios encontrar facilmente un algoritmo (y configuracion) capaz
de resolver efectivamente sus problemas. En este sentido, se estan investigando
técnicas para la ajuste automatico de parametros de metaheuristicas [|73, 122
e incluso para el disefio automatico de algoritmos [|13]]. Estas técnicas tienen
como objetivo adaptar automdaticamente los pardmetros de las metaheuristicas,
optimizando su rendimiento para problemas especificos. Sin embargo, tienen la
desventaja de tener unos requisitos de recursos computacionales muy elevados.
Este drea de investigacién estd en constante evolucidn, buscando cerrar la bre-
cha entre la complejidad de los problemas del mundo real y la efectividad de las
técnicas de optimizacion.
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En este contexto, esta tesis doctoral propone un enfoque alternativo basado
en el uso del conocimiento existente para crear una herramienta que brinde re-
comendaciones a los usuarios finales [161] sobre configuraciones superiores de
algoritmos mads alld de sus ajustes predeterminados. Sobre esta base, este tra-
bajo aprovecha la eficacia establecida de las tecnologias de la Web Semadntica,
que han demostrado su eficacia en muchos otros campos. Estas tecnologias son
fundamentales para integrar y representar el conocimiento del dominio, apoyar
la estandarizacion de datos y facilitar la integracion semdntica desde multiples
fuentes [134]. Las ontologias son el método mas ampliamente utilizado para
describir el conocimiento, ya que permiten una definicion formal y basada en
la l6gica de primer orden como un vocabulario comtn para compartir informa-
ciéon en un dominio especifico [[145]. Para alimentar las recomendaciones, se
utiliza una ontologia para definir la estructura de un grafo de conocimiento don-
de se pueden almacenar los resultados de las herramientas de generacién de
configuraciones. Para facilitar ain mas a los usuarios finales el uso de metaheu-
risticas, se estudian los Modelos Grandes de Lenguaje (siendo LLMs sus siglas
en inglés) [[171] como una tecnologia para ayudar con la implementacién de
problemas de optimizaciéon multiobjetivo dentro de marcos de optimizacidn.

Motivacion

La principal hipdtesis que sustenta esta tesis doctoral es que, dada la experien-
cia previa sobre la relacién entre una configuracién algoritmica especifica y la
calidad del resultado de dicho algoritmo para resolver un problema, y dada una
métrica de similitud entre dos problemas, es posible proporcionar recomenda-
ciones a usuarios no expertos para elegir una configuracién algoritmica para
resolver eficientemente un problema especifico.

El uso de un enfoque basado en el conocimiento es clave en este trabajo.
Las ontologias permiten la descripcién inequivoca de entidades y las relaciones
entre estas entidades en un dominio de aplicacién. La definicién de un modelo
semantico basado en una ontologia OWL 2 (Web Ontology Language) [|58]] para la
configuracién automatica de parametros de algoritmos de optimizacion facilita
aprovechar el resto de tecnologias de la Web Semantica.

El uso de tecnologias de la Web Semantica posibilita no solo describir for-
malmente problemas, algoritmos, pardmetros, configuraciones y métricas de ca-
lidad, sino también anotar los resultados de las herramientas de generacién de
configuraciones e integrar toda esta informacion facilmente en un grafo de co-
nocimiento. Ademads, las ontologias permiten definir restricciones légicas en el
dominio, lo que ayuda a verificar la validez de las configuraciones, facilita la con-
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sulta del grafo de conocimiento y ofrece la posibilidad de aplicar razonamiento
semantico sobre €l [71].

Esta linea de investigacién se enmarca dentro del contexto del proyecto “Aether-
UMA: Una aproximacién holistica de smart data para el andlisis de datos guia-
do por el contexto: explotacién de semantica y contexto” (PID2020-112540RB-
C41), financiado por el Ministerio de Ciencia e Innovacién de Espafia, ya que sus
objetivos estan fuertemente alineados con él.

Objetivos y fases

El objetivo principal de esta tesis es el disefio y desarrollo de una herramienta
de recomendacion para metaheuristicas para resolver problemas de optimiza-
cién continuos multiobjetivo mediante un enfoque basado en el conocimiento
utilizando las tecnologias de la Web Semadntica. Este objetivo se divide en varios
objetivos mds pequefios de la siguiente manera:

Objetivo 1: Disefiar e implementar una ontologia OWL 2 para representar el
conocimiento en el campo de la optimizacion multiobjetivo, tanto para los algo-
ritmos como para los problemas, que sirva como modelo semdntico para generar
un grafo de conocimiento.

1.1: Seleccionar un conjunto representativo de algoritmos de optimizacién
multiobjetivo para modelar sus parametros.

1.2: Seleccién de un conjunto de problemas multiobjetivo de referencia y
las caracteristicas a estudiar sobre ellos.

1.3: Disenar e implementar la ontologia.

Objetivo 2: Generacidon automadtica de configuraciones de los algoritmos y pro-
blemas elegidos previamente.

2.1: Evaluar un enfoque de meta-optimizacién para la generacién y eva-
luacién de configuraciones algoritmicas.

2.2: Disefiar e implementar la metodologia de anotacion para agregar con-
figuraciones y caracteristicas del problema al grafo de conocimiento.

Objetivo 3: Diseflar un conjunto de consultas SPARQL para buscar, para un pro-
blema dado, los algoritmos y configuraciones mas prometedores para resolverlo.

3.1: Disefiar las consultas SPARQL para proporcionar recomendaciones a
los usuarios.
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3.2: Experimentacion y validacion.

Objetivo 4: Definir o seleccionar una métrica para evaluar la similitud entre
varios problemas multiobjetivo, segin sus caracteristicas del landscape de los
espacios de busqueda y objetivos.

4.1: Extraccién de las caracteristicas del landscape de problemas multiob-
jetivo.

4.2: Disefio de una métrica a partir de las caracteristicas disponibles para
definir la similitud entre varios problemas a partir de sus caracteristi-
cas del landscape.

4.3: Experimentacién y validacién de la métrica elegida.

Objetivo 5: Implementar herramientas auxiliares para facilitar la implementa-
cién de problemas de optimizaciéon multiobjetivo dentro de un marco compatible
con el sistema de recomendacion.

5.1: Evaluar el uso de LLM existentes para la implementaciéon automatica
de problemas de optimizacién multiobjetivo a partir de una represen-
tacién textual.

5.2: Generar un conjunto de datos de alta calidad de problemas sintéticos
multiobjetivo para permitir el entrenamiento de un modelo.

5.3: Adaptar un LLM para resolver esta tarea.

5.4: Evaluar el modelo adaptado sobre un conjunto de problemas del mun-
do real.

Objetivo 6: Disefio e implementacién de una herramienta de recomendacién
6.1: Implementar la herramienta de recomendacién.
6.2: Pruebas y validacion de las recomendaciones proporcionadas.

Ademas, como objetivo no funcional se plantea proporcionar implementa-
ciones de codigo abierto de todas las contribuciones relacionadas con esta tesis
doctoral, siguiendo las mejores practicas en desarrollo de software y proporcio-
nando documentacién de alta calidad para cada proyecto. Este enfoque facilita la
utilizacion de estas implementaciones, tanto dentro como fuera de la comunidad
de investigacidn.
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Contribuciones

Las principales contribuciones de esta tesis doctoral estan relacionadas con los
objetivos descritos en la seccion anterior de la siguiente manera:

* Un framework semantico guiado por una ontologia para consolidar el cono-
cimiento de la optimizaciéon multiobjetivo en forma de una ontologia OWL
2 siguiendo los principios FAIR [157]]. El Capitulo 3| presenta la ontolo-
gia moody (Multi-Objective Optimization ontologY), la columna vertebral
semantica del framework semantico que aborda los Objetivos 1 y 3.

* En el Capitulo |4} se realiza un estudio sobre el landscape del espacio de
busqueda de los problemas multiobjetivo seleccionados (Objetivo 4). Se
ha seleccionado un conjunto de métricas que se utilizardn para caracterizar
el landscape del espacio de variables y objetivos, e implementar moorpho-
logy, una biblioteca de software para calcular estas métricas en problemas
implementados en el framework jMetal.

* El Capitulo |5| cubre el Objetivo 2, revisando el estado del arte en auto-
configuracién para optimizaciéon multiobjetivo y proponiendo una herra-
mienta destinada a configurar y disefiar automdaticamente metaheuristicas
para problemas de optimizacidon multiobjetivo, llamada Evolver. La clave de
Evolver es formular el proceso de autoconfiguracion como un problema de
optimizacién multiobjetivo, lo que permite la aplicacién de algoritmos de
optimizacién multiobjetivo ya establecidos para encontrar configuraciones
especificas para metaheuristicas.

* Una evaluacién de los LLMs en el estado del arte para resolver la tarea
descrita en el Objetivo 5 se presenta en el Capitulo [6]. Después de la eva-
luacidn, el capitulo se centra en el resto de los objetivos propuestos: se
describe el desarrollo de una herramienta alimentada por un LLM para la
implementacion automatica de problemas de optimizacién multiobjetivo,
incluida la generacion de un conjunto de datos de entrenamiento, el pro-
ceso de ajuste fino y la validacion posterior del modelo.

* El Objetivo 6 se aborda en el Capitulo |7, en el que se desarrolla recom-
moonder, una herramienta de recomendacién que integra las demds contri-
buciones de esta tesis doctoral en un sistema de recomendacién integrado
para ofrecer a los usuarios mejores configuraciones de algoritmos que las
que se usa por defecto.

Una descripcion visual de estas contribuciones se puede ver en la Figura

El desarrollo de esta tesis doctoral ha dado lugar a la publicaciéon de dos
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Figura 1: Descripcidn general de las contribuciones de esta tesis doctoral.

manuscritos en revistas de alto impacto, indexadas en el Journal Citation Reports
(JCR), y otro articulo presentado en una conferencia internacionale:

José F. Aldana-Martin, Juan J. Durillo, Antonio J. Nebro. “Evolver: Meta-
optimizing multi-objective metaheuristics”. In: SoftwareX 24 (2023), p.
101551 [2].

Resumen: Evolver es una herramienta basada en la formulacién de la con-
figuracion automatica y el disefio de metaheuristicas multiobjetivo como
un problema de optimizacién multiobjetivo que puede resolverse utilizan-
do el mismo tipo de algoritmos; es decir, estamos aplicando un enfoque
de meta-optimizacién. Evolver proporciona implementaciones altamente
configurables de algoritmos de optimizacion multiobjetivo representativos
que pueden configurarse automdticamente a partir de una serie de pro-
blemas multiobjetivo utilizados como conjunto de entrenamiento y una
lista de indicadores de calidad que son los objetivos a optimizar. Nuestra
herramienta se basa en el framework jMetal, por lo que se pueden utili-
zar una gran cantidad de algoritmos existentes como meta-optimizadores.
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Una interfaz grafica permite a los cientificos definir facilmente escenarios
de autoconfiguracién, simplificando asi el complejo proceso de encontrar
configuraciones de algoritmos de alta calidad.

* José F. Aldana-Martin, Maria del Mar Roldan-Garcia, Antonio J. Nebro, Jo-
sé F. Aldana-Montes. “MOODY: an ontology-driven framework for stan-
dardizing multi-objective evolutionary algorithms”. In: Information Scien-
ces 661 (2024), p. 120184 [3].

Resumen: La aplicacidon de tecnologias semdnticas, particularmente onto-
logias, en el ambito de los algoritmos evolutivos multiobjetivo no es exten-
dido a pesar de su eficacia en la representacién del conocimiento. En este
articulo presentamos MOODY, una ontologia disefiada especificamente pa-
ra formalizar este tipo de algoritmos, abarcando sus respectivos pardmetros
y problemas de optimizacién multiobjetivo basados en una caracterizacion
de los landscapes de su espacio de busqueda. MOODY esta disefiado para
ser particularmente aplicado en la configuraciéon automatica de algoritmos,
que implica la busqueda de los parametros de un algoritmo para optimi-
zar su rendimiento. En este contexto, observamos una notable ausencia
de componentes y parametros estandarizados, y consideraciones relacio-
nadas como las caracteristicas de los problemas y las configuraciones de
algoritmos. Esta falta de estandarizacion introduce dificultades en la se-
lecciéon de combinaciones de componentes validas y en la reutilizacién de
configuraciones algoritmicas entre diferentes implementaciones de algorit-
mos. MOODY ofrece un medio para infundir anotaciones semanticas en las
configuraciones encontradas por herramientas automaticas, permitiendo la
consulta eficiente de los resultados y la integracién entre diversas fuentes
mediante un grafo de conocimiento. Validamos nuestra propuesta presen-
tando cuatro estudios de caso.

* José F. Aldana-Martin, Antonio J. Nebro, Juan J. Durillo, Maria del Mar Rol-
dén Garcia. “A Study About Meta-Optimizing the NSGA-II Multi-Objective
Evolutionary Algorithm”. In: 9th International Conference on Metaheuris-
tics and Nature Inspired Computing (In press). META 2023. Communications
in Computer and Information Science. Springer, Cham [4]].

Resumen: El disefio automatico de metaheuristicas multiobjetivo es una li-
nea de investigacion activa destinada a, dado un conjunto de problemas
utilizados como conjunto de entrenamiento, encontrar la configuracion de
un optimizador multiobjetivo capaz de resolverlos eficientemente. El resul-
tado esperado es que el algoritmo autoconfigurado pueda ser utilizado para
encontrar aproximaciones precisas del frente de Pareto para otros proble-
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mas. En este articulo, realizamos un estudio sobre la meta-optimizacién del
conocido algoritmo NSGA-II, es decir, pretendemos usar NSGA-II como una
herramienta de configuraciéon automatica para encontrar configuraciones
de NSGA-II. Esta buisqueda se puede formular como un problema multiob-
jetivo donde las variables de decision son los componentes y parametros de
NSGA-II y los objetivos son indicadores de calidad que deben minimizarse.
Para desarrollar este estudio, confiamos en el framework jMetal. El analisis
que proponemos tiene como objetivo responder a las siguientes pregun-
tas de investigacion: RQ1 - écomo de complejo es construir el paquete de
meta-optimizacion?, y RQ2 - ése pueden encontrar configuraciones preci-
sas? Realizamos una experimentacion para responder a estas preguntas.

Esta tesis doctoral no sélo contribuye a la literatura cientifica, sino que tam-
bién enfatiza las aplicaciones practicas, proporcionando una implementacion de
todos los resultados de esta investigacién a través de multiples repositorios de
codigo abierto alojados bajo una organizacién dedicada a esta tesis en GitLab ﬂ
Los proyectos asociados estan disponibles para el publico bajo la licencia MIT
(excepto los pesos de los modelos que se encuentran bajo Apache 2) e incluyen:

* moody: Este proyecto proporciona el modelo semantico desarrollado a tra-
vés de esta tesis doctoral, implementado como una ontologia OWL 2. Ade-
mas, el repositorio de cddigo incluye ejemplos en Python para anotar datos
de acuerdo con el modelo, documentacion HTML de la ontologia y un pi-
peline de CI/CD que despliega la ultima versién como paginas de Gitlab.
Tambien existe una URL permanente para la ontologia, que respeta la ne-
gociacion de contenido y devuelve tanto la documentacion HTML como la
ontologia en formato RDF.

— Repositorio Git: https://gitlab.com/jfaldanam-phd/moody
— URL permanente: https://w3id.org/moody

* Evolver: Parte de la familia jMetal, Evolver es una herramienta para la con-
figuraciéon automadtica y el disefio de metaheuristicas multiobjetivo. Esta
desarrollado en Java 17 como un proyecto Maven y se basa en jMetal 6.1,
pero también se proporciona como una imagen Docker desde el Registro
de Contenedores de Github. Ademas, proporciona una interfaz grafica de
usuario opcional para facilitar su uso implementada en Python 3.9. El repo-
sitorio incluye: ambos proyectos, documentacion sobre como usar la herra-
mienta y un pipeline de CI/CD para construir automaticamente las nuevas
versiones para ambos proyectos.

https://gitlab.com/jfaldanam-phd
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— Repositorio Git: https://github.com/jMetal/Evolver

* moorphology: Biblioteca de software para caracterizar el landscape del es-
pacio de variables y objetivos de un problema multiobjetivo continuo, ba-
sada en una implementacion de jMetal. Implementado en Java 17 como
un proyecto Maven, este proyecto proporciona un pipeline de CI/CD para
construir automadticamente la ultima versién y desplegar la documentacion
javadocs de la biblioteca. Ademads, para evaluar esta biblioteca se propor-
ciona una implementacién de los problemas COCO [63, |20, 21]] para jMe-
tal.

— Repositorio Git: https://gitlab.com/jfaldanam-phd/moorphology
— Javadocs: https://jfaldanam-phd.gitlab.io/moorphology/

— Repositorio de la suite bbob-biobj de COCO para jMetal: https://
gitlab.com/jfaldanam-phd/cocodjmetal

» SyntheticAl: Generador sintético de problemas multiobjetivo, tanto en len-
guaje natural como en el framework de jMetal. Este generador aprovecha
LLMs y la tecnica de few-shot learning y estd implementado en Python a
través de la API de OpenAl.

— Generador de problemas para generar el conjunto de datos de entre-
namiento: https://gitlab.com/jfaldanam-phd/syntheticai

* moostral: Herramienta de software para la implementacion automatica de
problemas de optimizacion multiobjetivo en el framework jMetal, basada
por una versién adaptada de Mistral-7B. Esta herramienta estd implemen-
tada en Python y utiliza las bibliotecas transformer y PEFT para la adapta-
cién del modelo y streamlit para la interfaz grafica de usuario.

— Herramienta de implementacién automadtica y cédigo de adaptacion:
https://gitlab.com/jfaldanam-phd/moostral

— Pesos para el LLM adaptado: https://huggingface.co/jfaldanam/
moostral-7B

* recommoonder: Proporciona a los usuarios finales recomendaciones sobre
metaheuristicas para resolver un problema especifico, basado en conoci-
miento previo. Desarrollado en Python 3.10, incluye médulos para la in-
gestidn, visualizacidn, consulta y exportacion de la informacion disponible
en el grafo de conocimiento.

— Repositorio Git: https://gitlab.com/jfaldanam-phd/recommoonder
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* meta-qdo: Enfoque alternativo a Evolver mediante la aplicacion de Quality
Diversity Optimization [25] al proceso de autoconfiguraciéon de un algorit-
mo multiobjetivo (ver Seccion para obtener mds informacién). Es una
implementacién temprana para investigacion, utilizando pyribs [150] y el
algoritmo CMA-ES con margenes [60].

— Repositorio Git: https://gitlab.com/jfaldanam-phd/meta-qdo

Conclusiones

A continuacién, se proporcionan algunas conclusiones sobre cada una de las
areas que se han discutido.

Modelado semdantico en el dominio de la optimizaciéon multi-
objetivo

Esta tesis de doctoral propone un framework basado en ontologias para la estan-
darizacién en el campo de la optimizacion multiobjetivo, centrandose en algo-
ritmos evolutivos. moody, la ontologia principal que guia el framework, abarca
aspectos desde la formalizacién de algoritmos evolutivos y sus parametros hasta
problemas multiobjetivo con sus caracteristicas de landscape.

Efi moody estd desarrollado en OWL 2 y estd enlazado a ontologias exter-
nas como BIGOWL, OPTION y DMOP. Se proporciona una implementacién de
referencia para afiadir configuraciones de algoritmos evolutivos, convirtiendo la
salida de la herramienta de autoconfiguracién irace [103] al formato estdndar
RDF.

Se han proporcionado cuatro casos de uso para validar moody. Estos casos de
uso son la mejora de herramientas de autoconfiguracién a través del framework
moody, la integracién de datos de herramientas de autoconfiguracién u otras
fuentes, la consulta del grafo de conocimiento para obtener informaciéon util
y la exportacién de este conocimiento a marcos de optimizacién utilizados en
aplicaciones del mundo real, como pagmo [14] de la Agencia Espacial Europea.

Para proporcionar caracteristicas del landscape de problemas multiobjetivo al
grafo de conocimiento propuesto, se proporciona una implementacion de estas
métricas como el proyecto de software moorphology. Para validar el conjunto
seleccionado de métricas, se evalua la estabilidad de las caracteristicas sobre
el conjunto biobjetivo COCO, acompafiada de una implementacién en jMetal.
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Ademads, se estudia la calidad del conjunto de caracteristicas para caracterizar
problemas de optimizaciéon multiobjetivo.

Autoconfiguracion de metaheuristicas

En esta tesis se presenta un estudio en el que el algoritmo NSGA-II se utiliza
como meta-optimizador, es decir, como una herramienta que, dada un conjunto
de problemas como conjunto de entrenamiento, tiene como objetivo encontrar
las mejores configuraciones a partir de un conjunto de pardmetros y componen-
tes de NSGA-II. Utilizando un esquema de codificacién simple y aprovechando
caracteristicas existentes en jMetal, la propuesta se desarrolla completamente
dentro de jMetal, eliminando asi la necesidad de cualquier herramienta externa.

Se han definido varios experimentos para validar esta propuesta consideran-
do dos escenarios y tres experimentos para cubrir tanto la bisqueda automa-
tica de configuraciones de NSGA-II para conjuntos de entrenamiento de uno o
varios problemas. Los resultados de estos experimentos revelan que el meta-
optimizador es capaz de encontrar configuraciones de NSGA-II que logran con
éxito los objetivos definidos.

Después de validar el enfoque, se presenta Evolver como un paquete de soft-
ware destinado a la meta-optimizacion de metaheuristicas multiobjetivo. Al defi-
nir la busqueda automatica de configuraciones para optimizadores multiobjetivo
como un problema multiobjetivo, Evolver facilita al usuario encontrar variantes
de algoritmos que se adaptan a varios problemas de optimizacién utilizados co-
mo conjunto de entrenamiento. Esta herramienta ofrece una serie de metaheu-
risticas multiobjetivo representativas que son altamente configurables (NSGA-II,
MOEA/D, SMS-EMOA, MOPSO).

Evolver esta implementado en Java y se basa en el framework jMetal, por
lo que se pueden utilizar una gran cantidad de metaheuristicas ya existentes
como meta-optimizadores. Los usuarios familiarizados con jMetal se sentiran
cémodos con Evolver y tendran la oportunidad de utilizarlo como herramienta
de investigacién en la linea de configuracién automatica de metaheuristicas. La
interfaz grafica proporcionada permite a los usuarios no expertos configurar y
ejecutar facilmente una ejecucién de meta-optimizacién.

El funcionamiento de Evolver se ilustra considerando un ejemplo que repre-
senta un escenario tipico en el que un ingeniero pretende encontrar una variante
de NSGA-II para resolver un tipo determinado de problemas.

Ademads, se propone un novedoso enfoque alternativo mediante la aplica-
cion de Quality-Diversity para la configuracion automatica de metaheuristicas.
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La aplicacion de estas técnicas de optimizacién proporciona un conjunto de con-
figuraciones algoritmicas diversas que se combinan para mejorar la robustez y
la generalizacidn de las configuraciones individuales, y se evalia sobre un gran
conjunto de problemas de referencia.

Implementacidon automatica de problemas de optimizaciéon mul-
tiobjetivo

En este trabajo se aborda el desafio de convertir la representacién en lenguaje
natural o textual de la formulacién de problemas de optimizacién multiobjetivo
en cddigo ejecutable, disefiando una herramienta que automatiza el proceso de
implementacién.

Las principales contribuciones radican en la adaptacién de un LLM sobre un
conjunto de datos sintéticos de problemas multiobjetivo generados por un gene-
rador de problemas personalizado proporcionado junto con el modelo. El modelo
propuesto traduce de manera efectiva la representacion textual de la formulacién
de un problema de optimizacién en su implementacion equivalente en el frame-
work jMetal, y el modelo se valida empiricamente utilizando una serie de diez
problemas multiobjetivo del mundo real.

Ademas, el modelo entrenado se incrusta dentro de una herramienta con una
interfaz grafica de usuario y un conjunto de pasos de validacién para garantizar
la correccién de la implementacion proporcionada sin requerir la alta potencia
computacional generalmente asociada con los LLM. Tanto los pesos del modelo
como la herramienta estan disponibles bajo una licencia abierta.

Recomendacion automatica de algoritmos de optimizacién mul-
tiobjetivo

La contribucién final es el desarrollo de una herramienta llamada recommoon-
der. Esta herramienta integra las capacidades de las herramientas anteriores en
un motor de recomendacién en un paquete facil de usar para el usuario. re-
commoonder esta disefiado para ayudar a los usuarios no expertos a seleccionar
configuraciones de algoritmos que superen las configuraciones predeterminadas
estandar.

Posteriormente, la herramienta se evaltia en problemas conocidos y descono-
cidos, y se confirma empiricamente cémo las medidas de similitud que se des-
criben en el Capitulo 4] son relevantes para la recomendacién de configuraciones
algoritmicas especificas.



TRABAJOS FUTUROS xli

Trabajos futuros

Esta seccion enumera lineas potenciales de trabajo para continuar la investiga-
cion presentada en esta tesis doctoral. El cédigo fuente de todas las herramientas
presentadas en esta tesis es de codigo abierto bajo una licencia permisiva para
cualquier persona interesada en continuar cualquiera de las lineas de investiga-
cion presentadas.

La ontologia moody puede extenderse incluyendo otras metaheuristicas,
como la optimizacién por enjambre de particulas, y nuevos problemas, in-
cluyendo problemas de optimizacion discreta. En este sentido, trabajar con
problemas del mundo real es particularmente interesante, pero plantea un
desafio especial, ya que usualmente el frente de Pareto es desconocido.

Un andlisis en profundidad sobre si el conjunto de caracteristicas del lands-
cape presentado en esta tesis es el conjunto éptimo de caracteristicas, cémo
afectan al rendimiento algoritmico y un analisis cuantitativo sobre como se
relacionan con la similitud de problemas son lineas de investigacion abier-
tas.

La métrica propuesta para calcular la similitud entre problemas de optimi-
zacion multiobjetivo, que actualmente se basa en medir la distancia entre
sus caracteristicas del landscape, puede mejorarse mediante la integracion
de técnicas de aprendizaje automadtico. Estas técnicas podrian emplearse
para asignar dindmicamente pesos variables a cada caracteristica, depen-
diendo, por ejemplo, del algoritmo utilizado.

Otra linea interesante implica un estudio mds profundo sobre la similitud
entre los problemas de una misma familia, qué caracteristicas afectan esa
similitud y los sesgos introducidos por los autores.

En el tema de la autoconfiguracion, un estudio que examine hasta qué
punto se puede reducir el nimero de evaluaciones del metaoptimizador en
la busqueda mientras que las configuraciones resultantes de NSGA-II aun
pueden resolver los problemas de manera eficiente. Un estudio relaciona-
do es encontrar hasta qué punto se puede reducir el limite computacional
para las configuraciones que se estan evaluando mientras atin se obtienen
buenas configuraciones. Esta ultima opcién es especialmente interesante
en problemas computacionalmente costosos.

Adaptar Evolver para soportar la optimizacién en problemas con un fren-
te de Pareto desconocido. Esto implica el uso de métricas de calidad para
el enfoque de metaoptimizaciéon que no requieran un frente de referen-
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cia, como el hipervolumen, y ajustar dindmicamente el frente de referencia
durante el proceso de btisqueda. Esta segunda opcién implica usar un ar-
chivo externo de soluciones que seran reevaluadas al actualizar el frente
de referencia.

En la implementacién automadtica de problemas de optimizaciéon multiobje-
tivo, el entrenamiento de LLMs para generar salida para otros framework de
optimizacién como PlatEMO o Pymoo es una linea de investigacién abier-
ta. Esta extension en PlatEMO abriria la herramienta a un mayor niamero
de usuarios. Otras lineas de investigacion para mejorar la eficiencia del
modelo son la cuantizacion del modelo o el preentrenamiento con tokeni-
zadores personalizados disefiados para reconocer simbolos especificos del
framework. Esta dltima permitiria reducir el nimero de tokens necesarios
para generar cddigo vdlido, mejorando tanto la latencia como el coste de
inferencia.

Un enfoque diferente para mejorar el LLM propuesto es el estudio sobre el
uso de tecnologias semanticas para inyectar conocimiento de dominio en
el modelo, con la intencién de generar implementaciones de problemas a
partir de descripciones informales en lenguaje natural o mas cercanas al
lenguaje utilizado por los humanos.

Continuar la investigacion sobre el uso de Quality Diversity Optimization
con un estudio sobre la aplicaciéon de conjuntos diversos en problemas del
mundo real también es una linea de investigacion abierta.



Chapter 1

Introduction

This chapter provides an overview of the primary fields explored in this PhD
thesis, offering insights into the motivation behind this research, along with its
principal goals and objectives. This chapter concludes by highlighting the pri-
mary contributions of this PhD to the related fields, along with outlining the
organization of the remaining chapters of the thesis.
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1.1 Background

Optimization has been an integral part of human problem-solving for centuries,
predating even the oldest of known historical figures. These kind of problems,
which involve finding the best solution from all feasible solutions, have been
faced in various forms since ancient times. For instance, in ancient Greece, Eu-
clid laid the foundation for geometric optimization by defining the Euclidean dis-
tance, which represents the minimum distance between two points as a straight
line. This insight from Euclid can be framed as an optimization problem where
the objective is to minimize the distance between two points. By formulating it
in this way, mathematical techniques can be applied to find the optimal solution,
which turns out to be the straight line connecting the two points. This concept of
optimization, rooted in the fundamental principles of geometry, has transcended
time and disciplines, becoming a cornerstone in fields ranging from mathematics
and physics to engineering and computer science.

Until the 1980s, optimization techniques were mostly classical mathematical
methods. The 1980s marked a significant turn in the field with the emergence of
evolutionary algorithms [28,|33]. These algorithms, inspired by biological evolu-
tion, were particularly adept at solving complex optimization problems that were
previously intractable. They represent stochastic techniques, which, while not
guaranteeing the identification of the global optimum for problems, frequently
yield quasi-optimal solutions within a reasonable time frame. Remarkably, these
algorithms do not necessarily demand specific domain information about the
problem being optimized to generate robust approximations to the optimal so-
lution. These characteristics contribute to their widespread adoption, making
them highly utilized techniques in various domains.

During the 1990s, evolutionary algorithms, became part of a broader cate-
gory known as metaheuristics. These high-level techniques operate by manip-
ulating lower-level methods, often heuristics, to deliver efficient optimization
algorithms. This integration expanded the scope of optimization approaches,
encompassing various algorithms, such as Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Tabu Search (TS), and more [17]. Over the last
two decades, a focus of research has intensified on the study of multi-objective
optimization problems and their resolution using metaheuristics. These prob-
lems, frequently encountered in real-world applications across various domains,
are characterized by being formulated based on two or more conflicting func-
tions that must be optimized simultaneously. This implies that improving one of
them leads to a worsening in the rest [45].

The challenge of multi-objective optimization lies in navigating the contra-
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dictory nature of these objectives, where the optimal solution isn’t a singular
outcome but rather a set of compromise solutions, known as the Pareto set. In
this set, no solution surpasses another across all objectives, and its correspon-
dence in the objective space is named as Pareto front. When applied to solve
multi-objective problems, metaheuristics are aimed then at finding an accurate
approximation to the Pareto front.

The challenging landscape of optimization is further defined by the No Free
Lunch theorem [|160], which posits that there is no algorithm universally opti-
mal for solving all optimization problems within a class. This implies that, when
faced with a specific optimization problem, the optimal algorithm to address it
cannot be predetermined. The intricate nature of problem-specific nuances de-
mands a dynamic and adaptable approach to algorithm selection. At the same
time, metaheuristics are extremely sensitive to their configuration parameters,
relying heavily on parameter tuning to boost the effectiveness of these tech-
niques. This requires a deep understanding of the field and, more importantly,
the specific algorithm used.

End-users (biologists, engineers, economists, etc.) who need to optimize
multi-objective problems are often not experts in metaheuristics, and often uti-
lize the default configuration of a popular algorithm without tuning its param-
eters to their real-world problem. Therefore, a current and active research area
involves developing tools that enable these users to easily find an algorithm (and
configuration) capable of effectively solving their problems. In this regard, tech-
niques are being investigated for the automatic tuning of metaheuristics parame-
ters [[73,/122] and even for the automatic design of algorithms [|13]]. These tech-
niques aim to adapt the parameters of metaheuristics automatically, optimizing
their performance for specific problems. However, they come with the downside
of requiring substantial computational resources. This area of research is contin-
uously evolving, seeking to bridge the gap between the complexity of real-world
problems and the effectiveness of optimization techniques.

In this context, this PhD thesis proposes an alternative approach based on
using existing knowledge to create a tool to provide end-users recommenda-
tions [161]] of superior configurations of algorithms beyond their default set-
tings. Building on this idea, this work leverages the established effectiveness
of semantic technologies, which have been proven in many other fields. These
technologies are pivotal in integrating and representing domain knowledge, sup-
porting data standardization, and facilitating semantic integration from multiple
sources [134]. Ontologies are the most widely spread method to describe the
knowledge, especially allowing a formal and logic-based definition of concepts as
a common vocabulary to share information in a specific domain [[145]. To power
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the recommendations, ontologies are used to define the structure of a knowl-
edge graph where the results of configuration generation tools can be stored.
To further facilitate end-users the use of metaheuristics, Large Language Models
(LLMs) [[171] are studied as a technology to help with the implementation of
multi-objective optimization problems within optimization frameworks.

1.2 Motivation

The main hypothesis underpinning this PhD thesis proposal is that given previ-
ous knowledge on the relationship between a specific algorithmic configuration
and the quality of the result of said algorithm solving a problem and given a
similitude metric between two problems, it is possible to provide recommenda-
tions to non-expert users to choose an algorithmic configuration to efficiently
solve a specific problem.

The use of a knowledge-based approach is key in this work. Ontologies allow
for the unambiguous description of entities and the relationships among these
entities in an application domain. Defining a semantic model based on an OWL 2
(Web Ontology Language) ontology [|58] for the automatic configuration of opti-
mization algorithm parameters enables us to exploit Semantic Web technologies.

The use of Semantic Web technologies allows not only to formally describe
problems, algorithms, parameters, configurations, and quality metrics but also
to annotate the results of configuration generation tools and integrate all this
information easily in a knowledge graph. Furthermore, ontologies allow us to
define logical constraints in the domain, enabling us to verify the validity of con-
figurations, facilitates querying the knowledge graph and offers the possibility to
apply semantic reasoning over it [71].

This research line is framed within the context of the “Aether-UMA: Una
aproximacioén holistica de smart data para el andlisis de datos guiado por el con-
texto: explotacidon de semantica y contexto” (PID2020-112540RB-C41) project,
funded by the Spanish Ministry of Science and Innovation, as its objectives are
strongly aligned with it.

1.3 Objectives

The main objective of this thesis is the design and development of a recommen-
dation tool for metaheuristics for solving multi-objective continuous optimiza-
tion problems by applying a knowledge-based approach based on Semantic Web
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technologies. This objective is split in several smaller ones as follows:

Objective 1: Design and implement an OWL 2 ontology to represent multi-
objective optimization knowledge, for both the algorithms and problems, to
serve as the semantic model to generate a Knowledge graph.

1.1: Select a representative set of multi-objective optimization algorithms
to model their parameters.

1.2: Selection of a set of benchmark multi-objective problems and the
characteristics to study over them.

1.3: Design and implement the ontology.

Objective 2: Automatic generation of configurations of the previously chosen
algorithms and problems.

2.1: Evaluate a meta-optimization approach for the generation and evalu-
ation of algorithmic configurations.

2.2: Design and implement the annotation methodology to add configura-
tions and problem characteristics to the knowledge graph.

Objective 3: Design a set of SPARQL queries to search, for a given problem, the
algorithms and configurations more promising to solve it.

3.1: Design the SPARQL queries to provide users recommendations.
3.2: Experimentation and validation.

Objective 4: Define or select a metric to evaluate the similitude between several
multi-objective problems, according to their landscape characteristics.

4.1: Extraction of the landscape characteristics of multi-objective prob-
lems.

4.2: Design of a metric from the available characteristics to define the
similitude between several problems according to their landscape char-
acteristics.

4.3: Experimentation and validation of the metrics chosen.

Objective 5: Implement auxiliary tools to facilitate multi-objective optimization
problem implementation within a supported framework for the recommendation
system.

5.1: Evaluate the use of existing LLMs for the automatic implementation of
multi-objective optimization problems from a textual representation.
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5.2: Generate a high-quality dataset of synthetic multi-objective problems
to enable the training of a model.

5.3: Fine-tune a LLM to solve this task within the computing capacities of
a single user.

5.4: Evaluate the fine-tuned model over a set of real-world problems.
Objective 6: Design and implementation of a recommendation tool

6.1: Implement the recommendation tool.

6.2: Testing and validation of the recommendations provided.

Additionally, as a non-functional objective, the goal is to provide open source
implementations of all contributions related to this PhD thesis, following the best
practices in software development and providing high-quality documentation for
each project. This approach facilitates the utilization of these implementations,
both within and beyond the research community.

1.4 Thesis contributions

The main contributions of this PhD thesis are related with the objectives de-
scribed in the previous section as follows:

* An ontology driven semantic framework to consolidate multi-objective op-
timization knowledge in the form of an OWL 2 ontology following the
FAIR principles (Findable, Accessible, Interoperable, and Reusable) [[157].
Chapter [3| presents the moody (Multi-Objective Optimization ontologY) on-
tology, the semantic backbone of the semantic framework addressing Ob-
jectives 1 and 3.

* In Chapter 4, a study is conducted on the landscape of the search space
of the selected multi-objective problems (Objective 4). A set of metrics
has been selected that will be used to characterize the landscape of the
variable and objective space, and implement moorphology, a software li-
brary to calculate these metrics on problems implemented on the jMetal
framework.

* Chapter [5| covers Objective 2 and reviews the state of the art in auto-
configuration for multi-objective optimization and proposes a tool aimed at
automatically configuring and designing metaheuristics for multi-objective
optimization problems, named Evolver. The key of Evolver is to formulate
this process as a multi-objective optimization problem, which allows the
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application of well-established multi-objective optimization algorithms to
find targeted configurations for metaheuristics.

* An evaluation of state-of-the-art LLMs for solving the task described in Ob-
jective 5 is presented in Chapter [6] Following the evaluation, the chapter
focuses on the rest of the objectives: developing a tool powered by an LLM
for the automatic implementation of multi-objective optimization problems
is described, including the generation of a training dataset, the fine-tuning
process and subsequent evaluation of the model.

* Objective 6 is addressed in Chapter |7, developing recommoonder, a rec-
ommendation tool that integrates the other contributions of this PhD into
a cohesive recommendation engine to provide users recommendations of
superior configurations of algorithms beyond their default settings.

A visual overview of this contributions can be seen in Figure

The development of this PhD has resulted in the publication of two manuscripts
in high-impact journals, indexed in the Journal Citation Reports (JCR), and one
other article presented on an international conference:

e José F. Aldana-Martin, Juan J. Durillo, Antonio J. Nebro. “Evolver: Meta-
optimizing multi-objective metaheuristics”. In: SoftwareX 24 (2023), p.
101551 [2].

Abstract: Evolver is a tool based on the formulation of the automatic con-
figuration and design of multi-objective metaheuristics as a multi-objective
optimization problem that can be solved by using the same kind of algo-
rithms; i.e., we are applying a meta-optimization approach. Evolver pro-
vides highly configurable implementations of representative multi-objective
solvers which can be automatically configured from a number of multi-
objective problems used as the training set and a list of quality indica-
tors which are the objectives to be optimized. Our tool is based on the
jMetal framework, so a large number of existing algorithms can be used
as meta-optimizers. A graphical user interface allows scientists to easily
define auto-configuration scenarios, thus simplifying the complex process
of finding high-quality algorithm settings.

* José F. Aldana-Martin, Maria del Mar Roldan-Garcia, Antonio J. Nebro,
José F. Aldana-Montes. “MOODY: an ontology-driven framework for
standardizing multi-objective evolutionary algorithms”. In: Informa-
tion Sciences 661 (2024), p. 120184 [3].

Abstract: The application of semantic technologies, particularly ontologies,



CHAPTER 1. INTRODUCTION

Automatic problem implementation
(Chapter 6)

moostral

Automatically implement problem

in jl\fletal
Y %
Knowledge generation Problem analysis
(Chapter 5) (Chapter 4)
Evolver moorphology

Semantically enrich problem analysis |

Knowledge graph ’ for recommendation '

Semantically enrich Analyze new problem
algorithmic configurations
N
Feed recommendation engine
Y
Semantic enrichment Algorithmic recommendation
(Chapter 3) (Chapter 7)
moody recommoonder
| Insert into knowledge graph | Generate new knowledge

Figure 1.1: Global overview of the contributions of this PhD thesis.

in the realm of multi-objective evolutionary algorithms is overlook despite
their effectiveness in knowledge representation. In this paper, we intro-
duce MOODY, an ontology specifically tailored to formalize these kinds of
algorithms, encompassing their respective parameters, and multi-objective
optimization problems based on a characterization of their search space
landscapes. MOODY is designed to be particularly applicable in automatic
algorithm configuration, which involves the search of the parameters of
an optimization algorithm to optimize its performance. In this context,
we observe a notable absence of standardized components, parameters,
and related considerations, such as problem characteristics and algorithm
configurations. This lack of standardization introduces difficulties in the
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selection of valid component combinations and in the re-use of algorithmic
configurations between different algorithm implementations. MOODY of-
fers a means to infuse semantic annotations into the configurations found
by automatic tools, enabling efficient querying of the results and seam-
less integration across diverse sources through their incorporation into a
knowledge graph. We validate our proposal by presenting four case stud-
ies.

e José F. Aldana-Martin, Antonio J. Nebro, Juan J. Durillo, Maria del Mar
Roldan Garcia. “A Study About Meta-Optimizing the NSGA-II Multi-
Objective Evolutionary Algorithm”. In: 9th International Conference on
Metaheuristics and Nature Inspired Computing (In press). META 2023. Com-
munications in Computer and Information Science. Springer, Cham [4].

Abstract: The automatic design of multi-objective metaheuristics is an ac-
tive research line aimed at, given a set of problems used as training set, to
find the configuration of a multi-objective optimizer able of solving them
efficiently. The expected outcome is that the auto-configured algorithm can
be used of find accurate Pareto front approximations for other problems. In
this paper, we conduct a study on the meta-optimization of the well-known
NSGA-II algorithm, i.e., we intend to use NSGA-II as an automatic configu-
ration tool to find configurations of NSGA-II. This search can be formulated
as a multi-objective problem where the decision variables are the NSGA-II
components and parameters and the the objectives are quality indicators
that have to be minimized. To develop this study, we rely on the jMetal
framework. The analysis we propose is aimed at answering the following
research questions: RQ1 - how complex is to build the meta-optimization
package?, and RQ2 - can accurate configurations be found? We conduct an
experimentation to give an answer to these questions.

This PhD thesis not only contributes to scientific literature but also empha-
sizes practical applications, providing an implementation of all research findings
through multiple open source repositories hosted under a dedicated GitLab orga-
nization for this thesis|'| The associated projects are licensed to the public under
the MIT license (model weights are release under Apache 2) and include:

* moody: This project provides the semantic model develop through this PhD
thesis, implemented as a OWL 2 ontology. Additionally, the code repository
includes examples in Python to annotate data according to the model, html
documentation of the ontology and a CI/CD pipeline that deploys the latest
version as Gitlab pages. It provides a permanent URL for the ontology, that

Thttps://gitlab.com/jfaldanam-phd


https://gitlab.com/jfaldanam-phd
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respects content negotiation and returns either the HTML documentation
or the ontology in RDF format.
— Git repository: https://gitlab.com/jfaldanam-phd/moody

— Permanent URL: https://w3id.org/moody

* Evolver: Part of the jMetal family, Evolver is a tool for the automatic configu-

ration and design of multi-objective metaheuristics. It is developed in Java
17 as a Maven project and is based in jMetal 6.1, but is also provided as a
Docker image from the Github Container Registry. Additionally, it provides
an optional Graphical User Interface for ease of use implemented in Python
3.9. The repository includes: both projects, documentation on how to use
the tool and a CI/CD pipeline to automatically build the new releases for
both projects.

— Git repository: https://github.com/jMetal/Evolver

moorphology: Software library to characterize the landscape of the vari-
able and objective space of a continuous multi-objective problem, based on
a jMetal implementation. Implemented in Java 17 as a Maven project, this
project provides CI/CD pipeline to automatically build the latest release,
as well as deploy the javadocs documentation of the library. Additionally,
to evaluate this library an implementation of bindings of the COCO prob-
lems [|63, 20, [21] for jMetal is provided.

— Git repository: https://gitlab.com/jfaldanam-phd/moorphology
— Java docs: https://jfaldanam-phd.gitlab.io/moorphology/

— Git repository for COCO’s bbob-biobj suite for jMetal: https://gitlab,
com/jfaldanam-phd/coco4jmetal

SyntheticAl: Synthetic generator for multi-objective problems, both in nat-
ural language and in the jMetal framework. This generator leverages LLMs
and few-shot learning and is implemented in Python via OpenAI’s APIL.

— Problem generator to generate the training dataset: https://gitlab.
com/jfaldanam-phd/syntheticai

moostral: Software tool for the automatic implementation of multi-objective
optimization problems into the jMetal framework, powered by a fine-tuned

version of Mistral-7B. This tool is implemented in Python and uses the

transformer and PEFT libraries for the fine-tuning of the model and stream-

lit for the graphical user interface.


https://gitlab.com/jfaldanam-phd/moody
https://w3id.org/moody
https://github.com/jMetal/Evolver
https://gitlab.com/jfaldanam-phd/moorphology
https://jfaldanam-phd.gitlab.io/moorphology/
https://gitlab.com/jfaldanam-phd/coco4jmetal
https://gitlab.com/jfaldanam-phd/coco4jmetal
https://gitlab.com/jfaldanam-phd/syntheticai
https://gitlab.com/jfaldanam-phd/syntheticai
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— Automatic implementation tool and fine-tuning code: https://gitlab.
com/jfaldanam-phd/moostral

— Weights for the fine-tuned LLM: https://huggingface.co/jfaldanam/
moostral-7B

* recommoonder: Wrapper project to provide end users with recommenda-
tions on metaheuristics to solve a specific problem, based on previous
knowledge. Developed in Python 3.10, it includes modules for the inges-
tion, visualization, query and export of the information available in the
knowledge graph.

— Git repository: https://gitlab.com/jfaldanam-phd/recommoonder

* meta-qdo: Quality-Diversity optimization for metaheuristics is an alterna-
tive approach to Evolver by applying Quality-Diversity Optimization [25]]
to the process of auto-configuration of a multi-objective metaheuristic (see
Section for further information). It is an early research implementation
using pyribs [150] and the CMA-ES with margin algorithm [60].

— Git repository: https://gitlab.com/jfaldanam-phd/meta-qdo


https://gitlab.com/jfaldanam-phd/moostral
https://gitlab.com/jfaldanam-phd/moostral
https://huggingface.co/jfaldanam/moostral-7B
https://huggingface.co/jfaldanam/moostral-7B
https://gitlab.com/jfaldanam-phd/recommoonder
https://gitlab.com/jfaldanam-phd/meta-qdo




Chapter 2

Theoretical Foundation

The following chapter offers an overview of the main concepts and theoretical
foundations in the fields of multi-objective optimization, auto-configuration of
algorithms, large language models and Semantic Web technologies. These ar-
eas are closely linked to the research conducted in this PhD thesis, laying the
groundwork for understanding its contributions.

13
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2.1 Multi-objective optimization

As multi-objective optimization is the main field of study throughout this PhD
thesis, this section starts by defining the concept of optimization.

Definition [1; Optimization problem

In mathematics, optimization is the process of finding the best solution or
outcome from a set of possible alternatives. The quality of a solution is measured
by an objective or fitness function defined as f : S — R, where S # () represents
the search space. To solve an optimization problem, the goal is to search for
a solution i* that satisfies Equation The search space S in a optimization
problem can be reduced by additional constraints, which may come from the
problem’s domain.

FE) < f(i), VieS, (i")eSs 2.1)

This process can be of maximization or minimization, depending on the na-
ture of the optimization problem, but this does not change the process as a equal-
ity can be established between both types as shown in Equation [571.

max{f(i)|i€ S}t =min{—f(i) |i € S} (2.2)

Equation [2.3]illustrate a simple optimization problem and its optimal solution
is visually depicted in Figure [2.1

max —(a:2 + y2) +4 (2.3)

z,yeR

Optimization problems are typically categorized based on the number of ob-
jectives being optimized. These classifications include mono-objective optimiza-
tion, which focuses on a single objective; multi-objective optimization, which in-
volves optimizing multiple conflicting objectives; and many-objective optimiza-
tion, specifically addressing scenarios with four or more objectives. Multi-objective
optimization is an area of research concerned with finding an optimal solution
to a multi-objective optimization problem.

Definition [2; Multi-objective optimization problem

Formally, a multi-objective optimization problem can be defined as a prob-
lem of finding a vector ©* = [z}, z3,..., 2] which minimizes the vector func-

’n

tion f(Z) = [f1(Z), (), ..., fu(Z)]T while it satisfies m inequality constraints
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Figure 2.1: Graph of a surface defined by f(z,y) = — (22 + y?) + 4. The optimum value
is shown as a blue dot.

g:i(#) > 0,7 =1,2,...,m and p equality constraints h;(¥) = 0, i = 1,2,...,p,
where ¥ = [z1, 29, ..., 7,|T is the vector of decision variables. According to the
domain of the solutions, there are binary (z;_,, € B), integer (x;_,, € N) and con-
tinuous (z;_, € R) optimization problems. More generally, optimization prob-
lems are often categorized in two big groups: continuous problems and discrete
problems, which include integer and combinatorial (permutation, tree, graph...)
optimization problems.

The solution to a multi-objective optimization problem is not a single solu-
tion, but a set of them, known as the Pareto optimal set. To better understand
this, let’s define the concepts of Pareto optimality, Pareto dominance and, finally,
the Pareto optimal set or simply Pareto set.

Definition [3; Pareto optimality

The feasible region (2 is defined by the set of all values satisfying the con-
straints, and any point Z € € is a feasible solution.

A point ¥* € Q is Pareto Optimal if for every ¥ € Q@ and I = {1,2,...,k}
either Vi € I, f;(¥) = f;(¥*) or there is at least one i € [ such that f;(Z) > f;(Z¥).
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Plainly, this means that a vector x* is Pareto optimal if there does not exist
another feasible vector x which would improve some of the objectives without
causing a worsening of at least one other criterion at the same time.

Definition [4: Pareto dominance

A vector @ = (uy,...,u) is said to dominate ¥ = (vy,...,v;) (denoted by
u < ) if and only if 4 is partially less than v, as shown in Equation |2.4]

U0 <= Vie{l,...;k},u; <v; N Fie{l,... k}:u < (2.4)

Definition [5: Weak Pareto dominance

A vector @ = (uy, ..., uy) is said to weakly dominate ¥ = (vy, ..., v;) (denoted
by @ =<, v) if and only if « is partially less than or equal to v, as illustrated in

Equation

U= U <= Vie{l,...;k},u; <v; NI e{l,... k}:u <y (2.5

In weak Pareto dominance, the condition for dominance allows for equality
in the comparison of corresponding components of the vectors.

Definition [6; Pareto optimal set

—

For a given multi-objective optimization problem f (), the Pareto optimal set
is the set of feasible solutions such as no other feasible solution dominates it, as
shown in Equation

- - —

Pr={FfeQ|-37 e, f) < f(2)} (2.6)

Definition [7: Pareto front

—

For a given multi-objective problem f(Z) and its Pareto optimal set P*, the
Pareto front is formed by the same set of solutions, but defined in the objective
space instead of the variable space. This is defined in Equation

—

PF* = {f(&),% € P*}. 2.7)

The objective of multi-objective optimization is to find the Pareto front of the
multi-objective problem in question. Theoretically, a Pareto front could contain
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an infinite amount of points, such as when solving continuous problems. In prac-
tice, the goal is to find an approximation to the Pareto front that only contains
a finite number of points. For this practical limitation, it is important that the
approximation is as close as possible to the true Pareto Front (convergence) and
that the points in it are uniformly spread (diversity). Good convergence ensures
that near optimal solutions have found, while good diversity means that the so-
lutions have good coverage of the search space, leaving no regions unexplored.
To measure convergence and diversity, quality indicators are used.

Definition [8; Quality Indicator

A quality indicator is a metric used to measure the quality of a solution to a
optimization problem. Usually, they are used to measure the convergence and
diversity of a solution against an approximation of the Pareto front of a given
problem.

One key property of quality indicators is whether they are Pareto compliant.
Pareto compliance is an order property that allows a quality indicator to not con-
tradict the order imposed by the Pareto dominance relation. Weak (or partial)
Pareto compliance is a variant that acknowledges situations where there may ex-
ist ties or ambiguities in dominance relationships between solutions. The main
quality indicators used in this thesis are as follow:

e Inverted Generational Distance (IGD): The Generational Distance (GD) in-
dicator [|154] is used to measure how far the non-dominated solutions are
from the Pareto optimal set, measuring both convergence and diversity.
The GD is shown in Equation [2.8 where n is the number of non-dominated
solutions and d; is the Euclidean distance in the objective space between
each solution and the nearest member of the Pareto optimal set. The In-
verted Generational Distance [29] uses the same defintion, but using the
Pareto Front as the reference, and comparing each of its elements to the
solutions. As such, for a set A and a reference set R the IGD is calculated
as IGD(A,R) =GD(R,A).

VI a2
GD = Y==1 7 (2.8)

n

e Inverted Generational Distance Plus (IGD+): The Inverted Generational
Distance Plus is a variation of the Inverted Generational Distance to adapt
the metric to being partial Pareto compliant [78]]. This is fixed by using a
limited distance to avoid negative values, as shown in Equation [2.9| where
s; is an element of the solution front and z; is the nearest member of the
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Pareto optimal set.

di = max{s; — z;,0},i =1,2,..,m (2.9)
Spread (A): The spread metric can be used to measure the diversity of the
solution front [34]. Defined by Equation where n is the size of the
solution front, d; the Euclidean distance between two consecutive solutions
and d is the average of this distances. This metric has a value of 0 when
there is a perfect distribution.

" |d; — d
A227| - | (2.10)
=1

Epsilon (/.): The convergence metric epsilon [|174] is based on the concept
of e-dominance, shown in Equation Loosely speaking, a vector v e-
dominates (<.) a vector u, if by multiplying each objective in u by ¢, the
resulting vector is still weakly dominated by .

The binary epsilon indicator (I.(A, B)) compares two solution fronts (usu-
ally the solution obtained against the Pareto front) by the minimum factor
¢, such that any objective vector in B is e-dominated in at least one ob-
jective vector in A. The binary epsilon indicator is formally describe in
Equation [2.12

U=V <= Vli<i<n:y,<e-uANe>0 (2.11)
I.(A,B) = inlg{Vﬁe Bave A:v <X u} (2.12)
€c

Note, that in this PhD thesis the additive epsilon indicator variation will be
used, defined by adding instead of multiplying ¢ to the dominated vector,
as shown in Equations [2.13|and [2.14]

U= U <= Vi<i<n:vy;<e4+uANe>0 (2.13)

I(A,B) = inf{Vii € BIF € A: ¥ % il} (2.14)
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* Hypervolume (HV): The hypervolume is a joint metric for convergence and
diversity [173] that is defined by calculating the n-dimensional space cov-
ered by a solution front X with respect to reference point (usually formed
by the worst known value for each objective). Equation formally de-
fines this where #¢/ refers to a chosen reference point and ) refers to the
Lebesgue measure [88]] in a problem with M objectives.

X, €X,1<k<M

HV(fmf,X)_A< U [fk(Xn),xZefD (2.15)

* Normalized hypervolume (NHV): The normalize hypervolume [174] is a
variant of HV, defined as 1.0 minus the hypervolume of the front divided by
the hypervolume of a reference front, both with respect the same reference
point, as shown in Equation Note that the NHV is not defined if the
hypervolume of the reference front is 0.

HV (7 | X)
Hv(fref’ Xref)

NHV(z X X) =1 (2.16)

From the mentioned quality indicators, the hypervolume, and its normalized
variant, is the only one that does not require previous knowledge of the Pareto
front as a reference to be measure convergence, only requiring a reference point,
and is the only indicator that is fully Pareto compliant. It is important to note
that normalizing the reference front and the obtained solution front is required
to avoid misleading results with all the quality indicators [|65].

2.2 Metaheuristics

Now let’s move the focus about how to obtain the Pareto front for a multi-
objective problem. Due to impracticability of obtaining the Pareto optimal set,
non-exact techniques like metaheuristics [46] are often used in many situations,
such as when solving real world problems. These constitute a broad family of
optimization algorithms that can get quasi-optimal solutions by searching the
solution space of the problem in a reasonable time.

Definition [9: Metaheuristic

A metaheuristic can be defined as a high level strategy to guide a set of un-
derlying heuristics by combining different concepts for the exploration and ex-
ploitation of the search space in order to find a balance between diversification
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Figure 2.2: Classification of the different kind of optimization methods, focusing on the
relevant branches for this thesis.

P(0) « GeneratelnitialPopulation ()

t«< 0

Evaluation (P(0))

while not TerminationCriterionIsMet () do
P'(t) < Selection (P(¢))
Q(t) « Variation (P'(t))
Evaluation (Q(¢))
P(t+1) < Replacement(P(t), Q(t))
t+—t+1

end while

Listing 2.1: Pseudo-code of an evolutionary algorithm.

and intensification [|17, |55]]. This intelligent process allows to find near-optimal
solutions efficiently. A classification of the different metaheuristics can be found
in Figure [2.2

Definition (10} Evolutionary algorithm

An evolutionary algorithm is inspired by biological evolution, using mecha-
nism such as reproduction, variation and selection [28]. In evolutionary algo-
rithms, candidate solutions to a problem take the role of individuals in a popu-
lation, where they are evaluated in an iterative process where the set of candi-
date solutions evolves, similarly to the evolution of the population of a species
in the natural world. Listing shows the pseudocode for implementing an
evolutionary algorithm. Popular multi-objective evolutionary algorithms include
NSGA-II [|34], SPEA2 [177], SMS-EMOA [10] or MOEA/D []169]].

The steps of a generic evolutionary algorithm can be designed as workflow
of components, as depicted in Figure This way, a particular algorithm can
be obtained by selecting particular individual components of each type. In the
case of multi-objective evolutionary algorithms, replacement components typi-
cally include ranking strategies and density estimators, and the choice of using
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Figure 2.3: Workflow representing an evolutionary algorithm.

external archives (i.e., external populations) can be easily adopted by defining
an evaluation component that stores in the archive any evaluated solution.

To facilitate the use of metaheuristics, optimization frameworks provide a set
of already implemented algorithms and interfaces to facilitate the implementa-
tion and use of metaheuristics.

Definition [11} Optimization framework

An optimization framework is a software package that offers a compatible
set of state-of-the-art algorithms, benchmark problems, utilities (such as qual-
ity indicators) and algorithmic templates and interfaces to easily integrate new
metaheuristics or algorithms to solve optimization problems.

Popular optimization frameworks include jMetal [41]] which is implemented
in Java, jMetalPy [9] in Python, PlatEMO [148] in MATLAB, pymoo [15] in
Python, and Pagmo [14], which is written in C++. Additionally, Pagmo has a
Python wrapper called Pygmo ﬂ In this PhD thesis, jMetal is the optimization
framework used.

jMetal is an open-source framework implemented in Java primarily designed
for multi-objective optimization tasks in the field of evolutionary and genetic al-
gorithms. Originally, developed on 2015, it has been continuosly updated and is

1Pygmo: https://github.com/esa/pygmo2
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currently in version 6 [[113, 116]. jMetal aims to provide a flexible and extensi-
ble platform for researchers and practitioners to experiment with various meta-
heuristic algorithms, offering a wide range of functionalities, making it suitable
for both educational purposes and real-world applications.

At its core, jMetal provides implementations of various evolutionary algo-
rithms such as genetic algorithms, differential evolution, evolutionary strate-
gies, and genetic programming, among others. These algorithms are geared
towards exploring and exploiting solution spaces efficiently, with a focus on find-
ing solutions that represent trade-offs among multiple objectives. Additionally,
jMetal supports the incorporation of custom problem definitions, allowing users
to model and solve their specific optimization problems effectively. The modular
architecture of jMetal enables easy integration of new algorithms, operators, and
problem types.

While experimenting with metaheuristics, it is important to take into account
they are stochastic methods, which means that two experiments can not be di-
rectly compared using a single execution. As such, statistical tests are used to
decide whether the data sufficiently support a particular hypothesis.

Definition [12: Statistical tests

A statistical hypothesis test is a statistical method used to decide whether a set
of data sufficiently supports a specific hypothesis [82]]. To validate whether the
data supports the null hypothesis, a p-value computed from the test statistic and
the null hypothesis is rejected if the p-value is less than or equal to a predefined
threshold value a, which is referred to as the alpha level or significance level.

The choice of statistical test to use depends on the null hypothesis to validate
and the distribution of the data [[130]. The statistical tests used in this thesis
are the Shapiro-Wilk and the Wilcoxon rank sum test. The Shapiro-Wilk test
is a statistical test is whose null-hypothesis is that the data follows a normal
distribution [136].

The Wilcoxon rank sum test (also known as Mann-Whitney U test) is a non-
parametric test of the null hypothesis that, for randomly selected values X and Y
from two populations, the probability of X being greater than Y is equal to the
probability of Y being greater than X [[105].

2.3 Quality-Diversity optimization

Another branch of optimization is Quality-Diversity optimization. This section
describes the main concepts related to it, while the main use of Quality-Diversity
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in this thesis is available in Section
Definition [13} Quality-Diversity (QD) optimization

Quality-Diversity (QD) optimization is a branch of mono-objective stochastic
optimization were instead of searching for the optimum of a fitness function, it
searches for a large set of high-performing solutions that differ according to a
few user-defined features of interest [25].

In multi-objective optimization, the algorithms search the variable space for
feasible solutions that, when evaluated, are Pareto optimal, such as no other so-
lution in the objective space improves any of the objectives without worsening at
least one other objective, as every objective is considered to have the same im-
portance. However, in Quality-Diversity there is a clear ranking of the solutions
according to their evaluation according to a single objective, but the optimiza-
tion process also explores a new behavior space for diversity according to a set
of user-defined features. The use of multi-objective Quality-Diversity algorithms
is an active area of research [|18].

As a new search space for the solution’s behavior is added to the problem,
fitness functions must also evaluate the behavior characteristics of an individual.

Definition [14: Behavioral characteristic

In Quality-Diversity, the objective function must returns both: the fitness
value, fy, and either a behavioral characteristic (BC) ﬂor a vector of them, by:

fo,bo < f(0) (2.17)

The behavioral characteristics, by, describe how the solutions solve the spec-
ified problem, while the fitness value, f, quantifies how well it solves it. For
example, if the problem to be optimized is the distance to a target on the move-
ment of a robot, the behavioral characteristics could be the trajectory of the
movement.

As the outcome of a Quality-Diversity algorithm are a set of solutions that are
diverse according to the behavioral space. This set is usually called a collection,
map or archive of solutions.

Definition [15} Diversity archive

The archive of solutions is a data structure were a Quality-Diversity optimiza-
tion algorithm will store different “solution types” or “species”. A solution type

2Also known in the literature as behavioral descriptor (BD) or behavioral trait (BT)
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is a set of solutions to the optimization problem that show the similar behav-
ioral characteristics. Inside each solution types, each solution competes against
the rest to be maintained in the collection, as the elite individual for a specific
solution type.

The simplest implementation of an archive is a n-dimensional grid, were each
behavioral characteristic is discretized in fix or variable size buckets, where each
bucket holds the elite of a specific solution type. One hyper-parameter when
creating the archive is the “resolution” or grid-size that controls the tolerance to
determine when the behavior of two individuals is similar enough to be part of
the same solution type. However, there are methods to avoid the discretization
of the behavior space such as distance thresholds or local density estimates, such
as the average distance of the k-nearest neighbors.

The goal of a Quality-Diversity algorithm, such as MAP-Elites, is to “illumi-
nate” or explore the whole archive with the best possible solution found for each
cell.

Definition [16; MAP-Elites algorithm

The Multidimensional Archive of Phenotypic Elites, commonly known as the
MAP-Elites, algorithm [109]] is often used as reference of Quality-Diversity al-
gorithms due to its simplicity. A pseudo-code of the algorithm is available at
Listing MAP-Elites is inspired by evolutionary algorithms, altering known
solutions with mutation and crossover operators. These offspring solutions are
evaluated and, if they improve the previous elite on a specific behavior cell, are
added to the archive. Otherwise, only the best solutions is kept for each cell.

Other relevant algorithms include Novelty Search with Local Competition
(NSLC) and variants of MAP-Elites such as Covariance Matrix Adaptation MAP-
Elites (CMA-ME) [49] or Covariance Matrix Adaptation MAP-Annealing (CMA-
MAE) [48] that combines the self-adaptation techniques of the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [62] algorithm with MAP-Elites for
maintaining diversity.

2.4 Large Language Models

Since the release of GPT-3 by OpenAl, large language models have been a hot
topic in both research and industry. Chapter [6] focuses on the use of large lan-
guage models in the context of this doctoral thesis. This chapter defines and
the main concepts related to this sub-field of natural language processing are
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procedure add_to_archive(6, A)
(fo,be) « f(0)
c < get_cell _index(by)
if A(c) = null or A(c).f < fg then
A(e) + (fo,0)
end if
end procedure

# G indicates the number of initial solutions
# Iindicates the evaluation budget
procedure MAP-Elites([ni,...,nq4])
A+ create_empty_archive(ni,...,nq])
for i = 1—- G do
0 <—random_solution()
add_to_archive(6, A)
end for
for i = 1—1 do
0 «selection(A)
0’ +variation ()
add_to_archive(¢’, A)
end for
return A
end procedure

Listing 2.2: Pseudo-code of the MAP-Elites algorithm.

explained in this section.
Definition [17} Natural Language Processing

Natural Language Processing (NLP) is a subset of artifical intelligence that
aims to allow computers to recognize, understand and generate text and speech.
A recent breakthrough in NLP has been Large Language Models, that have rev-
olutionized the field by their remarkable capabilities, including generating co-
herent and contextually relevant text, answering questions, summarizing infor-
mation and translating languages. First, let’s step back and build the way there,
starting by the concept of language modeling.

Definition |18 Language modeling

Language modeling consists in the distribution estimation from a set of points
(1, .., 7, f} i.e., the training data, each of which is composed of a variable se-
quence of symbols (sy, ..., xk) that must appear on a specific order and where
repetitions are allowed [[129]. The different allowed symbols are language-
dependent and are also commonly referred to as tokens. Their ordering allows
to frame language modeling as the estimation of a product of conditional prob-
abilities, as seen in Equation [2.18

3Examples of points in the training data might be sentences, paragraph or documents.
“Examples of symbols are characters, words, or sub-words.
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n

P(z) = H P(sp | Sn—1,Sn—2,---S0) (2.18)

=1

Definition (19} Language model

A language model (LM) is a mathematical function that provides an estima-
tion of P(z), as well as for any of the conditionals P(s,, | Sp—1, Sn—2, - .. S¢). Given
an initial set of symbols, an LM allows to determine the probability for each ex-
isting symbol to follow that sequence, thus allowing to generate new sequences
following the same pattern in training data in an auto-regressive fashion: one to-
ken at a time, and the generated token is included in the input before generating
the next one.

Definition 20: Transformer architecture

Many of the state-of-the-art LMs today are based on the self-attention mech-
anism of the so-called Transformer architecture [[155], which is pictured in Fig-
ure Transformer is a deep-learning architecture that does not use recurrent
units such as previous recurrent neural architectures, such as long short-term
memory (LSTM), which were prevalently adopted for training large language
models.

The key innovation of the Transformer architecture is the use of self-attention
mechanisms, which allow the model to weigh the importance of symbols in an
input sequence when generating an output sequence. This architecture consists
of an encoder and a decoder, both of which are composed of multiple identical
layers containing self-attention and feed-forward neural networks.

Definition 21 Self-attention

The self-attention mechanism, also known as scaled dot-product attention,
allows a language model to consider different symbols in the context of others.
For each word, it computes a score (attention score) that signifies the impor-
tance of other words when encoding a particular word. These scores are used to
weight the influence of words in the encoding of a given word. This mechanism
enables the model to capture various levels of dependencies in a sentence, mak-
ing it particularly effective for many NLP tasks. The self-attention mechanism is
what gives the Transformer its ability to handle better understand the context
of a symbol and other long-range dependencies in text. This is just a high-level
overview of the Transformer architecture and self-attention mechanism, for a
more technical description refer to the “Attention Is All You Need” paper [155]].

When it comes to computational performance, the self-attention mechanism
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Figure 2.4: The Transformer model architecture [[155].

presents both advantages and challenges compared to other architectures. On
the positive side, self-attention is highly parallelizable, which means it can take
full advantage of modern hardware accelerators such as GPUs. This is because
the attention scores for all word pairs can be computed simultaneously, unlike
recurrent architectures like Long-short-term memory where computations are
inherently sequential. On the other hand, the computation of attention scores
for all pairs of words leads to a quadratic increase in computational complexity
with the length of the input sequence.

Definition 22} Scaling laws for neural language models

The performance of this kind of models depends on the size of both the model
(i.e., the number of parameters that need to be adjusted) and the training data
set [83]. Empirically, it has been shown that larger LMs are also more sampling
efficient than their smaller counterparts [83]]. The latter means that they are
able to provide a reasonable good approximation to P(x) in less training steps.
This behavior has been modeled as a series of scaling laws that usually have as
variable the number of parameters of the model, the dataset size, the computing
cost and the value of the loss function [[66, 83, 69]. As a consequence, the trend
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in the last years has been to train LMs with billions of parameters.
Definition 23} Large language model (LLM)

These billion-size models are popularly referred to as Large Language Models
(LLMs). For example, the OpenAl GPT3 [22], that initially served as the lan-
guage model engine of the popular ChatGPTP}, featured 175 billion parameters,
and the Nvidia Megatron-Turing NLG features 530 Billions of parameters [141].
Unfortunately, scaling the sizes of LLMs also comes with higher requirements of
computation [83], memory [138]], and energy consumption [133]]. Training or
performing inference with a trained LLM is normally done in supercomputers.

LLMs are usually trained in two steps [128]. The reasons for following this
two-stage procedure are twofold: the high costs of training large models [|83]
and the lack of abundant examples specific to the use case at hand [128] (that
would allow training an LLM from scratch only on that data). These two steps
are referred as pre-training and adaptation.

Definition [24f Pre-training

The pre-training of an LLM is generic and requires adjusting all the model
parameters for learning the structure and patterns in a language (i.e., learning
P(z) and the conditionals). The resulting model in this stage is often labeled as a
pre-trained LLM or foundational model. Pre-trained LLMs are often made avail-
able by different companies and research institutions, lowering the requirements
to benefit from LLMs, as they only need the adaptation step for the downstream
task.

Some of the state-of-the-art foundational models with open licenses are the
Llama family (Llama [|151], Llama 2 [[152] and Llama 3, each available on dif-
ferent number of parameters ranging from 7 to 400 billion) or Mistral, which
offers an open model with 7 billion parameters [80] or models with 8x7B and
8x22B using a sparse Mixture-of-Experts architecture [81].

Definition [25; Adaptation

The second step, called adaptation, is less computationally intensive and in-
volves adapting the LLM for a specific downstream task. This latter involves
changing the conditional probabilities to generate the next symbol according to
a specific use case instead of the token that would correspond in the learned
language in the pre-training stage.

There are mostly two approaches for the adaptation step: zero- and few-shot

>https://chat.openai.com/
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learning and fine-tuning.
Definition 26} Zero- and few-shot learning

Zero- and few-shot learning [22] are based on the empirical observation that,
while trained to learn to predict the next symbol in a sequence, LLMs are embed-
ding some knowledge regarding the considered training data despite not being
specifically trained for that. This knowledge can be extracted from the model by
providing the right input sequence of symbols. Designing such sequences is com-
monly referred to as prompt engineering. Zero- and few-shot learning require
then no changes to the pre-trained model. Unfortunately, their success is corre-
lated with the model size and therefore renders irrelevant when using smaller
language models.

The main difference is that zero-shot learning uses prompt engineering tech-
niques to guide the model to the correct output, while few-shot learning uses
examples along the prompt to showcase example pairs of input-output to the
model.

Definition 27} Fine-tuning

Fine-tuning [[128] consists in further adjusting the weights of the pre-trained
model, focusing on improving its performance for the downstream task. This
technique is a specific method of transfer learning [|172], where the idea is to
transfer the learned patterns and language structure to the new task. During
fine-tuning, the task-specific inputs are used to effectively transfer (i.e., modify-
ing some parameters on the LLM while keeping the others frozen) the knowledge
of a generic model into a more specialized one for a different task. Therefore,
a requirement to apply fine-tuning is to have a sufficiently large set of inputs
related to the downstream task. The specific fine-tuning method utilized in this
PhD thesis is Low-Rank Adaptation (LoRA).

Definition 28} Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) [72]] proposes freezing the foundational model
weights and introduces trainable rank decomposition matrices into each layer of
the Transformer architecture, greatly reducing the number of trainable parame-
ters. LoRA enhances training efficiency and reduces hardware requirements by
optimizing smaller matrices, while their linear design facilitates the integration
of the adapter matrices with the frozen weights during deployment, ensuring no
inference latency compared to fully fine-tuned models.
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2.5 Semantic Web technologies

The Semantic Web is key to the contributions of this PhD thesis, as it provides
the formal backbone for the proposed recommendation system. This section
introduces the main concepts and Semantic Web technologies utilized through
this work.

Definition [29: Semantic Web

The Semantic Web is an extension to the original Web, in which information
is well defined, in a format that can be utilized not only by humans, but also by
other tools or applications [67].

Semantic Web technologies are a set of open standards and tools with the
goal to facilitate integration of data from different sources. These tools achieve
this by easing the creation, publication and linking of data on the Web, allowing
machines to process, interpret and utilize them. The most relevant ones are
described in the following definitions.

Definition 30 Ontology

An ontology is a formal representation of a specific domain, simplified in a
way that can be represented for a specific purpose in terms of concepts, proper-
ties and relationships [|58]. Plainly, an ontology is a representation of a domain
area, by defining its set of interrelated terms, properties how they are related to
other terms, often via relational or logical expressions.

There are many languages to define ontologies, like OBO [140] or OWL,
which will be used on this thesis and it is describe as follows.

Definition 31} Web Ontology Language (OWL)

The Web Ontology Language (OWL) [31] is a markup language, defined as a
standard by the World Wide Web Consortium (W3C), used to define and publish
ontologies. OWL provides a set of primitives that can be used to model the
knowledge around a specific domain. These primitives take the form of axioms,
statements that formally and precisely describe a specific domain, and they are
classes (or concepts), properties (or attributes), instances (or class members)
and relationships.

This thesis utilizes OWL-DL (Web Ontology Language - Description Logic)
sublanguage, based on Description logic [5]. Table[2.1]includes a summary of the
OWL-DL and Manchester syntax [68]. OWL is built on top of RDF, a graph-based
markup language, but not all RDF features are included in all OWL variants.
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Descriptions Abstract Syntax DL Syntax Manchester Syntax
Operators intersection(C1,Ca,--- ,Ch) cinCyn---Cyp Cyand Ce and ---C)p,
P union(Cy,Ca, -+, Ch) CLUCU---Cp CiorCoor---Cy
for at least 1 value V from C' Jv.C V some C'
Restrictions for all values V' from C vv.C V only C
R is Symmetric R=R~ R Characteristics: Symmetric

A EquivalentTo:
Ciand Cs and ---C)p,
A SubClassOf:
Ciand Cs and ---C),

A partial(C1,Ca,- -+ ,Ch) ACCinCen---Chp
Class Axioms
A complete(Cq,Ca, - ,Cr) A=CinCeM---Cp

Table 2.1: Comparison between the most common terms from the OWL-DL semantic

syntax and the Manchester syntax. A complete list can be found at [68]].
ex:Topping

Figure 2.5: Example RDF graph.
Definition 32} Resource Description Framework (RDF)

ex.eats ex:hasTopping rdfs:subClassOf,

Resource Description Framework, defined as a W3C standard, is a graph-
based markup language providing a standard model for representing and ex-
changing data on the Web [135]]. It is encouraged by the W3C in applications
where data is processed or consumed by other machines or applications and not
only end-users.

RDF uses unique URIs (Uniform Resource Identifier) to identify each resource
on the Web. A resource is defined as a statement, represented as triples which
contain a subject, a predicate and an object [145]. RDF Schema (RDEFS) is
an extension of RDF, allowing the definition of classes and properties of re-
sources [145].

RDF graphs can be serialized to various syntax formats to be processed in
a structured and machine-readable manner. Some of the more common serial-
izations formats are RDF/XML, Turtle, N-Triples and JSON-LD (JSON for Linked
Data). Each serialization has its own syntax rules and strengths, catering to dif-
ferent use cases and preferences within the realm of linked data. An example
on several different serializations can be found at Listing while Figure [2.5
shows its graph representation.

After data has been stored in RDF format, SPARQL provides an standard lan-
guage for querying the graph.
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# Example in Turtle format
@prefix ex: http://example.org/ .
@prefix rdfs: http://www.w3.0rg/2000/01/rdf-schema# .

ex:Pizza ex:hasTopping ex:Pepperoni .
ex:Person ex:eats ex:Pizza .
ex:Pepperoni rdfs:subClassOf ex:Topping .

# Example in N-Triples format
<http://example.org/Pizza> <http://example.org/hasTopping>
<http://example.org/Pepperoni> .
<http://example.org/Person> <http://example.org/eats> <http://example.org/Pizza> .
<http://example.org/Pepperoni> <http://www.w3.0rg/2000/01/rdf—schema#subClassOf>
<http://example.org/Topping> .

Listing 2.3: Example serializations of RDF in Turtle (top) and N-Triples (bottom) format.

PREFIX ex: <http://example.org/>
SELECT DISTINCT ?person
WHERE {

?person ex:eats ?pizza .

?pizza ex:hasTopping ex:Pepperoni .

}

Listing 2.4: SPARQL query that returns all distinct person who eat Pizza with Pepperoni
as topings.

Definition 33} SPARQL Protocol And RDF Query Language (SPARQL)

The SPARQL Query Language (SPARQL) [64] is the W3C standard for a query
language for RDF graphs, allowing the extraction and manipulation of informa-
tion over web resources identified via URIs. SPARQL queries use graph-matching
to retrieve the set of RDF triples that match a pattern [123]], utilizing “?” as the
prefix to identify variables.

Listing provides an example query over the example graph provided in
Listing 2.3]

Definition 34} Semantic Web Rule Language (SWRL)

The Semantic Web Rule Language defines new ways to describe semantic
relationships between individuals in ontologies defined in OWL, adding extra
inference capabilities [70]. SWRL allows the definition of rules in the form of
“Antecedent = Consequent” to represent semantic relationships. The antecedent
and the consequent can be formulated as conjunctions of elements associated
with one or more attributes defined by a question mark and a variable name
(e.g., 7x) in the rule. An example rule about the ongoing example can be seen

in the Listing
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ex:Pepperoni(? topping)
~ ex:hasTopping (?x, ?topping)
—> ex:Pizza (?x)

Listing 2.5: A SWRL rule that classifies everything that has Pepperoni has a toping as a
Pizza.

After defining all the relevant technologies, lets shift the focus towards some
of the main benefits obtained by implementing them.

Definition [35} Semantic reasoning

OWL ontologies use a representation based on Description Logic, a family
of knowledge representation languages that enable the creation of a structured
and formal definition of knowledge within a specific domain of application. De-
scription Logics are decidable fragments of first-order logic, enabling semantic
reasoning over complex logical axioms.

Reasoning is the process of utilizing algorithms to infer new knowledge from
existing data by, for example, discover new connections between data not ex-
plicitly present in the original dataset [[71], either via the formal specification in
description logic that exists in OWL or using rules, for example in SWRL format.
Ontologies are used to represent the relationships between classes, while also
defining the constraints and logical rules they must satisfy. Some examples of
reasoners include Pellet [139] or HermiT [137]].

Definition 36} Knowledge graph

A knowledge graph is way to structure information as an interconnected net-
work of entities and relationships as nodes and edges in a graph topology [44].

In the context of the Semantic Web, knowledge graphs are often associated
with linked open data projects. Ontologies are often used in conjuction with the
knowledge graph. Ontologies model the concepts and relationships, creating a
shared vocabulary for a specific domain called terminological box (TBox), while
the assertional box (ABox) is build as a knowledge graph, focusing on represent-
ing the specific data, following the semantic model defined by the ontology.






Chapter 3

A Semantic Approach to
Standardizing Multi-Objective
Optimization

This chapter proposes a semantic framework, moody, to consolidate multi-objective
optimization knowledge in the form of an OWL ontology. moody follows the FAIR
principles and it is validated by four use cases in the context of automatic con-
figuration of multi-objective optimization with metaheuristics. moody is used to
structure the knowledge graph, incorporating all data generated during this PhD
thesis.

35



36 CHAPTER 3. STANDARDIZING MULTI-OBJECTIVE OPTIMIZATION

3.1 Introduction

The main challenge faced in this PhD thesis derives from the lack of a unified
and standardized approach in the design of multi-objective optimization algo-
rithms. Initially, there is no standard set of components to design these algo-
rithms from, so each researcher working on the topic usually implements their
own set of components, often similar to others previously defined. This ab-
sence hinders the comparison of results across different studies due to the lack
of a unified framework for integrating diverse data. Furthermore, the process
of auto-configuration [12] demands significant computational resources, as it
involves generating and evaluating thousands of configurations. Identifying an
existing configuration for a similar problem could save considerable time, but
the methods for defining problem properties and associating them with specific
configurations remain unclear.

In this context, semantic technologies have demonstrated their efficacy in var-
ious fields for integrating and representing domain knowledge, supporting data
standardization, and facilitating semantic integration from multiple sources [|134].
Ontologies are predominantly utilized to describe knowledge, offering a formal,
logic-based approach for defining concepts and establishing a common vocabu-
lary within a specific domain [145].

Addressing these needs, this chapter introduces a semantic framework, guided
by the FAIR principles (Findable, Accessible, Interoperable, and Reusable) [[157],
to consolidate knowledge in multi-objective optimization using an OWL ontol-
ogy. This framework also enables semantic reasoning in analyzing algorithm
configurations or optimization experiments [[71].

The main contributions are as follow:

* The development of an ontology called moody (Multi-Objective Optimiza-
tion ontologY)', which formalizes aspects of multi-objective evolutionary
algorithms, their parameters, continuous multi-objective problems, the land-
scapes of their search spaces, and the required quality indicators for as-
sessing algorithm performance. The ontology formalizes the set of algo-
rithm parameters for well-known evolutionary algorithms like NSGA-II or
MOEA/D, which helps to integrate configurations of different algorithm
implementations into a knowledge graph, and export them, if they are
compatible, to a different implementation of the algorithm.

* The creation of a knowledge graph, populated with algorithm configura-
tions and optimization experiments, annotated semantically as per the de-

! Available on permanent URL: https://w3id.org/moody
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fined ontology and formatted in RDF? This semantic framework empowers
advanced reasoning capabilities over the knowledge graph, showcasing its
efficacy in validating configurations of multi-objective algorithms within
the domain of algorithm auto-configuration. Moreover, the knowledge
graph serves as a foundation to provide users recommendations [161] of
superior configurations of algorithms beyond their default settings, as de-
scribe in following chapters.

* The implementation of four use cases to validate the semantic approach in
the context of automatic configuration of multi-objective evolutionary al-
gorithms. These include a detailed exploration of how moody can enhance
an auto-configuration tool, the integration of algorithm configuration and
experiments from varied sources for new experiment validation, SPARQL
queries for extracting insights from the knowledge graph, and the integra-
tion and exporting this knowledge into optimization frameworks used in
real-world applications, like pagmo [|14] from the European Space Agency.

The rest of this chapter is structured as follows. In Section a literature
overview is given. Section gives an in-depth description of the semantic
approach followed, focusing on the ontology model. Four use cases to validate
this approach are defined in Section and are later discussed in Section

3.2 Related works

The primary objective of the proposed ontology is to formalize algorithms, pa-
rameters, problems, and quality indicators within the multi-objective optimiza-
tion domain. This formalization aims to facilitate the creation of a knowledge
graph comprising algorithm configurations, capable of assimilating experiments
from diverse and heterogeneous sources, empowering semantic reasoning over
this knowledge graph.

Several studies have employed ontologies and metaheuristics. [86] defines
an ontology for annotating performance tests among continuous optimization
algorithms using BBOB (Black-Box Optimization Benchmarking) tests. [158]
uses ontologies to incorporate terminology and formal definitions with the de-
veloper’s reasoning and justifications for the optimization model about the ideas
and assumptions of each model. However, none of them addresses the use of
ontologies for the formal description of configurations and problems, aiming to
find the best possible configuration for an algorithm or the best algorithm to
solve a problem.

2The knowledge graph can be accessed at https://doi.org/10.5281/zenodo . 7458095
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In the field of multi-objective optimization, the use of ontologies to formal-
ize knowledge has not yet been widely accepted, with only a few cases noted.
After reviewing the available literature, the only ontology on multi-objective op-
timization is PMOEA ontology (Preference-based Multi-Objective Evolutionary
Algorithm) E] [90, [91]. PMOEA focuses mainly on preference-based algorithms,
preference models and preference integration to guide the algorithms. This fo-
cus on a small subset of the evolutionary algorithms field makes this ontology
not broad enough for the proposed framework.

There are other published ontologies with a more focused scope inside multi-
objective optimization. Examples of these ontologies are for modeling con-
straints in multi-objective optimization algorithms [7] or the domain knowl-
edge of the field of the multi-objective problem [127, 99, 24]. These ontologies
are transversal to moody. moody focuses on the formalization of the algorithms
themselves, while the ontologies mentioned here attempt to use domain knowl-
edge to help solve a problem in a specific domain.

One ontology with similar objectives of moody is OPTION (OPTImization al-
gorithm benchmarking ONtology) [|86]], which is aimed at making benchmarking
more reusable and interoperable, but it is centered only on single-objective opti-
mization. OPTION and moody are complementary, each focusing on a different
part of the optimization field, so mappings have been established between them
(see next section).

3.3 Semantic approach

moody is implemented as an OWL 2 ontology following the FAIR principles and
designed following the Ontology Development 101 methodology [|118] as follows:

1. Determine the domain and scope of the ontology. The goal of moody is
to be able to model experimentation in multi-objective optimization prob-
lems and algorithms. It provides a framework that allows algorithms to be
formalized with all their configurable parameters and problems defined by
their defining characteristics. The scope of moody is focused on the most
relevant algorithms (NSGA-II [34], MOEA/D [[169] and MOEA/D-DE [89])
and benchmark problems (Deb-Thiele-Laumanns-Zitzler (DTLZ) [36], Gu-
Liu-Tan (GLT) [|59], Li-Zhang 2009 (L.Z09) [89], REal-world problems (RE)
[147], CEC 2009 competition (UF) [[170], Zitzler-Deb-Thiele (ZDT) [|175]]
and Walking-Fish-Group (WFG) [76]] problem families) to highlight the

3Later renamed PMOMH (Preference-Based Multiobjective Metaheuristics)
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features of the ontology, but moody is designed to be easily extended with
new algorithms and real-world problems.

2. Consider reusing existing ontologies. To align the proposed ontology
with existing vocabularies, several ontologies have been reused. Firstly,
the Data Mining Optimization Ontology (DMOP) [|84] has been used to
describe the parameters for the optimization algorithms. From the big
data analytics OWL 2 ontology (BIGOWL) [6], the definition of the con-
cepts of algorithm and problem is reused. The OPTImization algorithm
benchmarking ONtology (OPTION) [86] is modeling single-objective opti-
mization, but some terms are common on both domains, so mappings have
been created between them, such as moody:Qualitylndicator that maps to
ontoopt:performance_evaluation_function or moody:ProblemResolution and
ontoopt:algorithm_execution.

3. Enumerate important terms in the ontology. The main terms of moody
are the Experiment, the Algorithm, the Parameter, the Problem, the Quality
Indicator and the Problem Resolution, which includes the results of each
execution in the Experiment.

4. Define classes and the class hierarchy. The classes of the ontology model
are the key concepts defined in the previous point and more specific classes
to model concrete Algorithms or Problems. Figure shows all the classes
defining the key concepts. For example, Algorithm is a concept defined at
BIGOWL, but moody expands it with the subclasses NSGA-II and MOEA/D.
These high level classes allow the ontological model to be easily expanded
when a use case needs new, more specific algorithms. They can be eas-
ily integrated as new subclasses of Algorithm, inheriting all the semantic
relationships from it.

5. Define the properties of classes and slots [} Object properties are used
to define relationships between classes. For example, an Experiment is eval-
uated by a Quality Indicator or a Parameter is compatible with an Algorithm.
Data properties are used to define what attributes an instance of a class
has. One example of data properties is Algorithm which has a crossover
type, a population size, between others.

6. Define the facets | of the slots. All properties in the ontology are con-
strained by their range and domain; for example, the object property eval-
uated by has a range of Experiment and a domain of Quality Indicator. For
the data properties, the domain is specified at the parent property, while

*On Ontology 101, slots refers to properties of classes and instances
°>0On Ontology 101, facets refers to constraints of properties
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+ Brabie + Algorithm = 'Algorithmic v ‘algorithm used' (Domain>Range)
. J Component' R
J | v = 'compatible with' (Domain>Range)
v = ‘evaluated by' (Domain>Range)
v = ‘indicator value' (Domain>Range)
v ‘parameter value' (Domain>Range)
Qu.allty : * @ Experiment * @ Parameter v/ = 'part of experiment' (Domain>Range)
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v = has individual
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'Quality ‘Problem 'Parameter =
S VR Resolution’ | Value' v = using (Domain>Range)

Figure 3.1: Class diagram of moody. Continuous arrows refer to subclass of. Dotted
arrows refer to specific properties as shown in the figure legend at right.

the range is specific to each property. Data properties range is not defined
only by its type but also by the possible values. These range definitions
allow a semantic reasoner, like Pellet [[139], to validate if an algorithm
configuration is valid, as showcased in Section Table shows the
range of all algorithm parameters.

7. Create instances. Individuals are specific data points that belong to a
class. These instances are created by mapping experimentation data to
RDF by following the model defined by the ontology. For this PhD the-
sis, an auto-configuration tool has been developed to generate instances
of configurations and map the to RDF creating a knowledge graph; more
information about it is available on Chapter

3.3.1 Ontology model

The moody ontology has a total of 59 classes, 11 object properties, 81 data prop-
erties and 580 logical axioms. The focus of the proposed ontology is bifold; on
the one hand, the ontology formally defines multi-objective optimization prob-
lems, the algorithms used to solve them and the quality indicators used to val-
idate the quality of the solutions. On the other hand, moody provides a frame-
work for the semantic annotation of multi-objective optimization experiments.

Figure [3.1] depicts the main classes of moody and Table [3.2] shows the formal
definition in description logic of the object properties in the ontology. A short
description of the most important classes is included next:

- Problem of multi-objective optimization, meant to be solved in a Experi-
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Parameter

Value Range

Aggregative function

{"PenaltyBoundarylntersection", "Tschebycheff", "WeightedSum"}

Algorithm result

"o

{"externalArchive", "population"}

BLX alpha crossover alpha value

xsd:double[>= "0.0"""xsd:double, <= "1.0"""xsd:double]

Create initial solutions

"o

{"latinHypercubeSampling", "random", "scatterSearch"}

Crossover probability

xsd:double[>= "0.0"""xsd:double, <= "1.0"""xsd:double]

Crossover repair strategy

non

{"bounds", "random", "round"}

Crossover

{"BLX_ALPHA", "SBX", "wholeArithmetic"}

Maximum number of evaluations

xsd:integer

Maximum number of replaced solutions

xsd:integer

Mutation probability

xsd:double[>= "0.0"""xsd:double, <= "1.0"""xsd:double]

Mutation repair strategy

non

{"bounds", "random", "round"}

Mutation

{"polynomial", "uniform"}

Neighborhood selection probability

xsd:double[>= "0.0"""xsd:double, <= "1.0"""xsd:double]

Neighborhood size

xsd:integer

Offspring population size

xsd:integer

Polynomial mutation distribution index

xsd:double[>= "5.0"""xsd:double, <= "400.0"""xsd:double]

Population size

xsd:integer

Population size with archive

xsd:integer

SBX crossover distribution index

xsd:double[>= "5.0"""xsd:double, <= "400.0"""xsd:double]

Selection tournament size

xsd:integer[>=2, <=10]

Selection

"o

{"random", "tournament"}

Uniform mutation perturbation

xsd:double[>= "0.0"""xsd:double, <= "1.0"""xsd:double]
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Table 3.1: Ranges for the possible parameters of an algorithm. The domain of all pa-
rameters is Parameter Value. Type of a value is xsd:string unless specified.

ment. moody supports characterizing each problem through a series landscape
characteristics [94] obtained through a sampling of the search space. Some
of the characteristics included are: the number of variables and objectives, the
average and maximum distance among solutions in the variable and objective
space, the proportion of non-dominated solutions or the average proportion of
dominated solutions between neighbors. moody currently contains the following
families of problems with their characteristics: DTLZ, GLT, LZ09, RE, UF, WFG
and ZDT. This process of sampling the landscape characteristics is explained in
more detail in Chapter

- Algorithm to solve a multi-objective optimization Problem, and it is used
in a Experiment. Each Algorithm is compatible with a series of Parameters that
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Object Properties Description Logic

algorithmUsed 3 algorithmUsed Thing C Experiment
T C V algorithmUsed Algorithm

compatibleWith 3 compatibleWith Thing C Parameter
T C V compatibleWith Algorithm

evaluatedBy 3 evaluatedBy Thing C Experiment
T LV evaluatedBy QualityIndicator

indicatorValue 3 indicatorValue Thing C ProblemResolution
T C V indicatorValue QualityIndicatorValue

parameterValue 3 parameterValue Thing C Experiment
T C V parameterValue ParameterValue

partOfExperiment 3 partOfExperiment Thing C ProblemResolution
T C V partOfExperiment Experiment

problemSolved 3 problemSolved Thing C Experiment
T C V problemSolved Problem

using 3 using Thing C Experiment
T C V using Parameter

valueOfIndicator 3 valueOfIndicator Thing C QualityIndicatorValue
T C V valueOfIndicator QualityIndicator

valueOfParameter 3 valueOfParameter Thing C ParameterValue
T C V valueOfParameter Parameter

Table 3.2: List of the most relevant object properties in moody formally defined using
the description logic syntax.

modify its behavior. Widespread algorithms from the state of the art have been
added to the ontology as a reference, like NSGA-II, MOEA/D and MOEA/D-DE.

- Parameter of an Algorithm. Implementations of metaheuristics allow chang-
ing the components of the Algorithm, such as changing the crossover function,
without developing an entirely new Algorithm. This flexibility in configurations
is particularly useful in the application of techniques of auto-configuration of al-
gorithms to optimize a metaheuristic to a specific problem (or set of problems).
In the current literature, each implementation defines its parameters, making it
difficult to compare two implementations. moody aims to provide a standard def-
inition of the parameters of the algorithms from the state of the art. Parameters
are compatible with a series of Algorithms and are used in a Experiment.

- Algorithmic Component is a subclass of Parameter that models the main
components of a metaheuristic. This Algorithmic Components are: the creation
of initial solutions, termination criterion, selection, variation and replacement
components. How these components form a generic evolutionary algorithm is
described in Listing

- Quality Indicators are used as metrics to quantify the quality of the non-
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dominated front after the process of optimization by a metaheuristic. They eval-
uate each Problem Resolution in a Experiment. The indicators usually measure
the current front’s quality in terms of convergence, diversity or both. Currently,
the most common quality indicators for MOPs have been included: Hypervol-
ume [|173]], Spread [34], Inverted Generational Distance [29], Inverted Genera-
tional Distance Plus [|78] and Additive Epsilon [|85].

- Problem Resolution defines a single execution of an Experiment. It is the
execution of a single Algorithm, using a defined set of Parameters, to solve a
specific Problem. This execution is evaluated with one or more Quality Indicator,
having one single Quality Indicator Value each.

- Experiment defines a series of independent Problem Resolution, utilizing
one Algorithm with a fixed set of Parameters to solve a Problem while evaluated
by a series of Quality Indicators.

3.3.2 Data consolidation

Once the ontology is defined, it is linked with other ontologies like DMOP,
BIGOWL, and OPTION. The linked ontology constitutes the terminological box
(TBox) of the proposed semantic framework. The assertional box (ABox) con-
siders all the instances containing the data modeled. The ABox is built as a
knowledge graph guided by the ontology. In order to create a solid base for
the knowledge graph, an auto-configuration framework, like irace [[103]] or the
one proposed in Chapter[5], is applied to jMetal [111]] to produce configurations
for the problems mentioned in the previous section, standardized to RDF format
using mapping functions.

A subset of the knowledge graph is shown in Figure [3.2| as an example of a
configuration graph structure. Figure provides an overview of the semantic
mode]ﬁ] and how data gets ingested into the knowledge graph. Section il-
lustrates a sample case demonstrating the process of transforming an algorithmic
configuration into a knowledge graph according to the moody ontology knowl-
edge.

A reference implementation of a tool to ingest into RDF is described in Chap-
ter This reference implementation in Python demonstrates how to load
to the knowledge graph configurations generated from the tools provided in
this PhD thesis. The Python script processes each configuration from the auto-
configuration tool’s output. It incorporates each configuration into the knowl-

The linked Open Data Cloud comes from https://lod-cloud.net/
’The implementation is available at: https://gitlab.com/jfaldanam-phd/recommoonder
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0.51564

moody:ProblemResolution “<—rdfitype-{ moody:Resolution_3457_ZDT3_0_8000 hyperVolumeValue

indicatorValue

moody:HyperVolume_0.51564

currentNumberOfEvaluations

partOfExperiment

8000
valueOfindicator

moody:Experiment moody:Experiment_NSGAIl_ZDT3_3457 moody:Qualitylndicator_HyperVolume

algorithmUsed

problemSolved moody:Algorithm_NSGAII
parameterValue
0.942 using

compatibleWith

crossoverProbabilityValue

moody:Problem_DTLZ1 moody:CrossoverProbabilty_0.942

valueOfParamete moody:Parameter_CrossoverProbability

Class O Individual Literal All properties without namespace are on the moody namespace

Figure 3.2: Graph representation of a the knowledge graph.

edge graph as an Experiment, specifying their properties in accordance with the
structure defined by the ontology. This ensures that each configuration’s details
are captured and formally integrated into the broader context of the knowledge
graph.

3.4 Validation

Four defined use cases validate the proposed moody ontology, highlighting its key
features. These use cases focus tasks such as performing semantic validation of
algorithm configurations, integrating existing knowledge from prior studies for
new experiments, executing sample queries on the resultant knowledge graph to
obtain valuable insights from the data, and, finally, exporting configurations to
various implementations.



3.4. VALIDATION 45

BIGOWL
; —]
DMOP OPTION g
moody =
Linked Open Data
s N N oy
N
Irace
configurations
- . >
— Mapping | | o
functions (@)
X
Other sources Knowledge
Graph
N J ~—_

Figure 3.3: General overview of the semantic framework moody.

3.4.1 Supporting auto-configuration

During the auto-configuration process, tools typically generate hundreds and
thousands of configurations, and some of them may lack significant differences.
This can occur due to various reasons, including negligible distinctions between
continuous parameters or, depending on the tool, a lack of consideration for de-
pendencies among parameters. For instance, it may evaluate two configurations
that utilize random selection but differ in the selection tournament size, even
though the tournament size parameter is only relevant when the tournament
component is employed as the selection method.

In this context, the utilization of a semantic model and the creation of a
knowledge graph can provide interesting options for auto-configuration pack-
ages. Firstly, by leveraging the knowledge graph populated with past executions
and the formal specification of parameter hierarchy, knowledge can be utilized
to avoid executing configurations that are known to yield poor results. Fur-
thermore, by utilizing knowledge of previous executions as a starting point, a
semantically-enriched auto-configuration tool can enhance the initial state and
facilitate more efficient configuration processes.

Secondly, having a formalized definition for the algorithm and its parameters
allows a SWRL engine to execute semantic reasoning and infer new knowledge
from the semantically annotated data. There are two ways to use a semantic
reasoner to validate configurations: one is to validate that every property has a
valid domain and range and the other is to use a reasoner to validate algorithm
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oody: Experiment (?x)

moody: SbxCrossoverDistributionIndex (?p)
moody: sbxCrossoverDistributionIndexValue (?pv, ?cv)
moody: parameterValue (?x, ?pv)

moody: valueOfParameter (?pv, ?p)

moody: Crossover (?p2)

moody: crossoverValue (?pv2, ?cv2)
moody: parameterValue (?x, ?pv2)

moody: valueOfParameter (? pv2, ?p2)
swrlb:equal (?cv2, "BLX ALPHA")

—> moody: InvalidExperiment (?x)

m
~
~
~
~
~
A
~
~
~

Listing 3.1: A SWRL rule to validate when parameters that depend from the SBX
crossover are used on an algorithm that uses BLX Alpha as the crossover operation.

configurations automatically. Due to the Open World Assumption, it is not possi-
ble to check directly if a configuration is valid. To validate a configuration, SWRL
rules are created to assert whether a configuration is invalid.

For the validation of the domain and range of the properties, moody formal-
izes both data and object properties (examples of each are described in Tables
and respectively). A semantic reasoner will check if those restrictions are
met, and if they are not, it will point out where the inconsistency lies.

For the automatic validation of configurations, the SWRL rules defined in List-
ings and check cases where a configuration is invalid because it mixes
configuration parameters of two crossover operators, SBX and BLX Alpha. List-
ing reads as follows: “Being ?x an experiment with a parameter ?p2 of type
Crossover and a parameter ?p of type SbxCrossoverDistributionIndex if both pa-
rameters have a value, and the value of Crossover is ‘BLX ALPHA, then ?x is an
invalid configuration”. This rule checks that parameters that depend on the SBX
crossover are not used with the BLX Alpha crossover, as they are incompatible.

Integrating these two approaches into auto-configuration tools would enable
the acceleration of the execution process by pruning sections of the search space
that have previously been explored with unfavorable outcomes or being dis-
carded due to semantic reasoning. Moreover, it guarantees the validity of the
configurations being evaluated.

3.4.2 Data integration

Semantic technologies allow data integration from several sources in a standard-
ized format, RDF. The configurations provided in a previous study can be seman-
tically annotated using an ontology to model the data. To demonstrate this idea,
the study presented in [[115] is included, where NSGA-II is auto-configured us-
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oody: Experiment (?x)

moody: BlxAlphaCrossoverAlphaValue (?p)
moody: blxAlphaCrossoverAlphaValueValue (?pv, ?cv)
moody: parameterValue (?x, ?pv)

moody: valueOfParameter (?pv, ?p)
moody: Crossover (?p2)

moody: crossoverValue (?pv2, ?cv2)
moody: parameterValue (?x, ?pv2)
moody: valueOfParameter (? pv2, ?p2)
swrlb:equal(?cv2, "SBX")

—> moody: InvalidExperiment (?x)

m
~
~
~
A
~
A
~
~
~

Listing 3.2: A SWRL rule to validate when parameters that depend from the BLX Alpha
crossover are used on an algorithm that uses SBX as the crossover operation.

ing the WFG family of problems and later used to solve the WFG and DTLZ
families against the default configuration of NSGA-II and other metaheuristics.
Listing shows the configuration of the NSGA-II found in the study and the
result of the algorithm solving the DTLZ1 problem with it in RDF serialized as
turtle. Figure shows a subset of this configuration as a graph. The ingesting
of this data to the knowledge graph depends on how the configurations were
defined in the original source. However, custom mapping functions or R2RML|Z_;]
rules can be defined to facilitate the process.

As previously mentioned, the auto-configuration of algorithms yields a sub-
stantial volume of configurations. Employing mapping functions to assimilate
these configurations into a knowledge graph, guided by the moody semantic
framework, opens avenues for in-depth analysis, such as validation of the con-
figurations, further reasoning analysis and the execution of SPARQL queries over
them.

3.4.3 Querying the knowledge graph

Once the data for a series of experiments have been ingested into the knowledge
graph guided by the ontology, the semantic model can be used to query the
data using the SPARQL query language. This use case shows sample SPARQL
queries that can be used to get insights into the knowledge graph. One first
sample in ListingB.1]includes the SPARQL query defined to obtain the parameter
configuration from a specific experiment. This query is a common yet useful
query as most other analyses will only return the experiment URI.

When experimenting with new algorithm configurations to solve a particular
problem, you can consult the knowledge base to find the best configurations that

8https://www.w3.org/TR/r2rml/
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### https://w3id.org/moody#Experiment NSGAII DTLZ1_GECCO19
moody:Experiment NSGAII DTLZ1 GECCO19 rdf:type owl:NamedIndividual ,

moody:Experiment ;

moody:algorithmUsed moody:Algorithm NSGAII ;

moody:evaluatedBy moody:QualityIndicator_ HyperVolume ;

moody:parameterValue moody:ParameterValue AlgorithmResult_externalArchive ,
moody:ParameterValue BlxAlphaCrossoverAlphaValue 0.5906 ,
moody:ParameterValue_CreatelnitialSolutions_latinHypercubeSampling ,
moody:ParameterValue CrossoverProbability 0.9874 ,
moody:ParameterValue_CrossoverRepairStrategy_bounds ,
moody:ParameterValue Crossover BLX ALPHA ,
moody:ParameterValue ExternalArchive crowdingDistanceArchive ,
moody:ParameterValue_MaximumNumberOfEvaluations_25000 ,
moody:ParameterValue MutationProbability 0.0015 ,
moody:ParameterValue MutationRepairStrategy random ,
moody:ParameterValue_Mutation_polynomial ,
moody:ParameterValue OffspringPopulationSize 200 ,
moody:ParameterValue_PolynomialMutationDistributionIndex_158.05 ,
moody:ParameterValue PopulationSizeWithArchive 20 ,
moody:ParameterValue PopulationSize 100 ,
moody:ParameterValue ProblemName dtlz.DTLZ1 ,
moody:ParameterValue ReferenceFrontFileName DTLZ1.csv ,
moody:ParameterValue_SelectionTournamentSize 9 ,
moody:ParameterValue_ Selection_tournament ,
moody:ParameterValue_Variation_crossoverAndMutationVariation ;

moody:problemSolved moody:Problem DTLZ1 ;

moody:using moody:Parameter AlgorithmResult ,
moody:Parameter_ BlxAlphaCrossoverAlphaValue ,
moody:Parameter CreatelnitialSolutions ,
moody:Parameter_Crossover ,
moody:Parameter_CrossoverProbability ,
moody:Parameter_CrossoverRepairStrategy ,
moody:Parameter_ExternalArchive ,
moody:Parameter_MaximumNumberOfEvaluations ,
moody:Parameter_ Mutation ,
moody:Parameter MutationProbability ,
moody:Parameter_ MutationRepairStrategy ,
moody:Parameter_ OffspringPopulationSize ,
moody:Parameter_PolynomialMutationDistributionIndex |,
moody:Parameter_PopulationSize ,
moody:Parameter_PopulationSizeWithArchive ,
moody:Parameter ProblemName |,
moody:Parameter ReferenceFrontFileName ,
moody:Parameter_Selection ,
moody:Parameter_SelectionTournamentSize ,
moody:Parameter_Variation

### https://w3id. org/moody#Resolution_GECCO19_DTLZ1_0_25000
moody:Resolution_ GECCO19_DTLZ1_0_25000 rdf:type owl:NamedIndividual ,
moody:ProblemResolution ;
moody:indicatorValue moody:QualityIndicatorValue HyperVolume 0.00353 ;
moody:partOfExperiment moody:Experiment NSGAII DTLZ1 GECCO19 ;
moody:currentNumberOfEvaluations 25000

Listing 3.3: RDF data of a NSGA-II configuration to solve the DTLZ1 problem in turtle
format.
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Figure 3.4: Graph representation of a subset of a NSGA-II configuration to solve the
DTLZ1 problem.

have been discovered. The second query, as described in Listing provides
the answer to the question of which algorithmic configuration is most effective
in solving a specific problem, based on a particular quality indicator. This query
takes into account that metaheuristics, in general, are not deterministic, so it
calculates the average value from multiple experiment executions.

A derived query to check for the best performing algorithm for problems with
similar characteristics can be seen in Listing[B.3|for problems with a disconnected
front. Comparing problems by their landscape helps transfer the knowledge of
good configurations from one problem to a new, similar problem. Chapter
delves deeper on how to group problems with similar landscape.
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3.4.4 Exporting configurations to different frameworks

As mentioned in Section configurations from diverse sources can be inte-
grated. However, the formal specification provided by moody allows to extract
the best configuration that can be compatible with different implementations of
an algorithm.

In this use case, a scenario is devised where a knowledge graph is populated
with configurations of the NSGA-II multi-objective evolutionary algorithm ob-
tained with different sources (such as irace and jMetal, as mentioned before) for
a set optimization problems. In this context, a user is interested in using the
NSGA-II algorithm included in pagmo, a framework for massively parallel op-
timization developed by the European Space Agency [14]; concretely, the user
would like to get a configuration of NSGA-II for a particular problem (ZDT4). So,
instead of trying to find that configuration using pilot tests, that is a trial-and-
error process, or using an automatic configuration tool (which can take hours
of computation), an alternative is to query the knowledge graph for a stored
configuration of NSGA-II for that problem.

The NSGA-II implementation of pagmo only allows to set the parameters of
the standard NSGA-II for continuous optimization, which are restricted to the
distribution indices of the SBX crossover and Polynomial mutation and the mu-
tation and crossover probabilities. The parameters mentioned are a subset of
those being annotated in the ontology. Therefore, when querying for the result,
the previous queries are extended to find configurations that utilize the values of
the standard version of NSGA-IL. Listing [B.4|demonstrate how to query for config-
urations that are compatible with pagmo. Small tolerances are given to floating
point values to ensure that all relevant configurations are being retrieved.

Figures shows an example of the fronts that can be obtained with the
NSGA-II included in pagmo for the considered problem. The front on the left
is obtained using the standard NSGA-II settings and the front on the right is
the corresponding one to run the algorithm using the configuration returned by
moody.

3.5 Discussion

There are two main reasons for the use of semantic technologies to model the
configurations of evolutionary algorithms. First, they are open standards for se-
mantic technologies defined by the W3C for the publication and integration of
data and are supported by open tools, allowing different optimization frame-
works or algorithmic implementations to store or retrieve configurations from
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Figure 3.5: In red, reference front for the ZDT problem. In blue, Front for the ZDT4
problem obtained by NSGA-II with standard settings (left), and front obtained by ex-
porting a configuration from moody (right). The target framework is pagmo.

a implementation-agnostic knowledge graph, as well as exporting them to each
implementation via mapping functions. The other driving factor behind the use
of semantic web technologies is to present data in a format that can be utilized
not only by humans, but also by other tools or applications.

While these open standards are widely utilized, it is important to note that
not all practitioners may be familiar with them. Consequently, the primary lim-
itation of the proposed semantic framework is the requirement for users to ac-
quaint themselves with these standards in order to integrate their applications or
tools with moody. However, the benefits of said standards (automatic integration
or open tools like reasoners) make it worthwhile trade-off for moody.

The field of metaheuristics sees a continuous influx of algorithm proposals,
often referred as new techniques, though in many cases they are variations of
metaphor-based approaches like evolutionary algorithms, particle swarm opti-
mization, or ant colony optimization [[143} 23, |168]. In this sense, the use of an
ontology such as moody can be the basis of a formalization of metaheuristic fami-
lies, including their constituting components and their relationships. This would
help in detecting when a new proposal is in fact a variant of existing algorithms,
which would have a positive impact in the potential users of such technique in
terms of clearly understanding their principles of working. Taking as an example
the workflow of evolutionary algorithms included in Figure describing the
components in a precise way would permit to determine that a metaheuristic
that fits into such workflow (i.e., its main components are a kind of selection,
variation and replacement strategies) can be considered as an evolutionary al-
gorithm.
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The presented use cases illustrate scenarios where this proposal demonstrates
its utility applied to the process of auto-configuration of algorithms and its broader
application as a comprehensive framework for integrating data that can subse-
quently be exported to any framework via mapping functions.



Chapter 4

Similarity Between Multi-Objective
Problems Via Landscape Analysis

This chapter focuses on a critical challenge in recommending algorithmic con-
figurations: defining a metric to measure the similarity between multi-objective
problems from a set of landscape characteristics. Additionally, in this chapter
moorphology is presented as a tool to sample from the variable and objective
search space of a multi-objective problem and calculate the required landscape
characteristic from said sampling. In the context of this PhD thesis, the proposed
similarity metric is key in the recommendation of algorithmic configurations for
solving unknown problems. At the same time, moorphology generated the main
characteristics that are used during the recommendation process.

53
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4.1 Introduction

In the context of optimization, landscape analysis is the field that studies the
topological and structural characteristics of optimization problems. From the
topology of the problem, a set of features are calculated which characterize dif-
ferent details about the landscape, such as ruggedness or multi-modality. These
landscape features allow for deeper analysis on the behavior of metaheuristics
and they provide the opportunity to select the best algorithm for new unseen
problems [94]]. However, it is still unclear what is the important feature(s) that
makes two problems similar [[122].

To implement a recommendation system, two complimentary components
are required: a set of landscape features that characterizes the space sufficiently
to separate the algorithms based on their performance, and a comprehensive set
of benchmark problems to supply a large-enough knowledge base to train and
evaluate a predictive model. While [94] defines the former, a practical imple-
mentation of said set of landscape characteristics is required. The knowledge
base required by the latter is provided by the work in this PhD thesis, where
Chapter |3| provides the semantic structure to create the required knowledge
graph and Chapter |5/ provide the tools to grow the knowledge graph to the re-
quired size.

Morphology, defined as “the branch of biology that deals with the form and
structure of organisms without consideration of function’{, have inspired the
name for moorphology P, a software tool that aims to fill the gap as an imple-
mentation for the analysis of the landscape features of multi-objective optimiza-
tion (MOO) problems. moorphology is based on the jMetal implementation of
multi-objective problems, using [94] as the source of the reference set of char-
acteristics, as the characteristics are designed and defined in enough detail to
implement them. Additionally, these features are used to define a similarity dis-
tance between multi-objective optimization problems.

The rest of this chapter is structured as follows: Section provides a liter-
ature review on the state of the field of landscape characterization for optimiza-
tion problems. In Section the selected landscape characteristics, and the
implementations details on their computation, are discussed. An evaluation on
the stability and characterization capabilities of the selected set of characteristics
is provided in Section |4.4

!From The American Heritage®Dictionary of the English Language, 5th Edition.
2Available at: https://gitlab.com/jfaldanam-phd/moorphology
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Type Name Description
Problem-
dependent name Name of the problem being sampled
n_var Number of variables
n_obj Number of objectives
n_cons Number of constraints
sample_size Number of samples used to extract the landscape characteristics
Global
dist_x_avg Average distance among solutions in the variable space
dist_x_max Maximum distance among solutions in the variable space
dist_f avg Average distance among solutions in the objective space
dist_f max Maximum distance among solutions in the objective space
nd n Proportion of non-dominated solutions
dist x_nd_avg Average distance among non-dominated solutions in the variable space
dist x_nd_max Maximum distance among non-dominated solutions in the variable space
rank_avg Average rank w.r.t. non-dominated sorting
rank_max Maximum rank w.r.t. non-dominated sorting
rank_ent Entropy of the number of solutions per rank w.r.t. non-dominated sorting
Evolvability
sup_avg_neig Average proportion of dominating neighbours
inf avg neig Average proportion of dominated neighbours
inc_avg_neig Average proportion of incomparable neighbours
Ind_avg neig Average proportion of locally non-dominated neighbours
Isupp_avg_neig Average proportion of supported locally non-dominated neighbours
dist x_avg neig  Average distance from neighbours in the variable space
dist_x_max neig Maximum distance from neighbours in the variable space
dist f avg neig Average distance from neighbours in the objective space
dist f max neig ~ Maximum distance from neighbours in the objective space
Ruggedness

dist_x_cor_neig
dist_f cor_neig

Neighbour’s correlation of the average distance from neigh. in the variable space
Neighbour’s correlation of the average distance from neigh. in the objective space

Table 4.1: Selected landscape characteristics with their definition. Most of them are
originally defined in [94].

4.2 Related works

As mentioned in the previous section, [94] is the main inspiration for this work
as it defines the set of characteristics that have been implemented inside moor-
phology. These characteristics are also known as “meta-features”, which are de-
scribed as a set of data points that characterize problem properties and, more
importantly, their relations with algorithm performance [27, 93].

Cosson et al. [|30] provides a deep study on the impact of sampling on the ex-
traction of multi-objective landscape features, and their integration into feature-
informed performance prediction and algorithm selection approaches, with a
focus in combinatorial multi-objective landscapes. This work shows that a ran-
dom walk using a reasonably small proportion of neighbors leads to cheap and
informative feature values. This type of sampling is taken into account in the
characteristics used in this work.
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However, none of them provide an open source practical implementation that
is readily available for use. moorphology fills that gap for the jMetal framework.

4.3 Implementation of the characteristics to study

The landscape features proposed by [30]] are based on measurements calculated
over a set of solutions obtained through a sampling of the problem under study.
The set of characteristics has been filtered to include only those whose corre-
lation with algorithm performance, in absolute terms, is greater than 0.5, ac-
cording to the reference article. Table displays the selected characteristics
computed by moorphology.

The sampling process utilizes random Latin hypercube sampling [106] to se-
lect n = 200 - d distinct solutions, where d represents the number of variables
in the problem. For each solution (z) within the sampling set (P), denoted
as x € P, its d closest solutions, measured by the Euclidean distance in the
variable space from the sampling set excluding x, are considered its neighbors.
The Spearman correlation [144] is employed by all metrics that involve corre-
lations. To enable comparison across different problems, all characteristics re-
lated to distance (except dist x max and dist f max) are normalized using the
max-min method based on the maximum and minimum values within their re-
spective search spaces, whether variable or objective space, for that particular
sample [65]]. The utilization of Latin hypercube sampling ensures that some of
the samples are proximate to the true maximum and minimum values.

moorphology is a Maven project develop using Java 17 and jMetal 6.1, us-
ing best DevOps practices for for automated testing and releases via continuous
integration and continuous delivery (CI/CD) pipelines. Following the implemen-
tation details mentioned above, moorphology implements them to be compatible
to any multi-objective problem that follows the jMetal interface for continuous
problems, including those with an unknown Pareto front. The return character-
istics are stored on JSON format and an example of the output can be seen in

Listing

4.4 Evaluation of the selected set of characteristics

To evaluate the characteristic selected and their implementation, two evaluations
methods are proposed. Firstly, an analysis on the stability of the selected charac-
teristics is implemented, using the COCO bi-objective functions [20] as the suite
of problems to study. COCO (Comparing Continuous Optimizers) is a platform
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{

}

"RE21": {

}

"

}

"sampleSize": 800,

"numberOfObjectives": 2,

"numberOfVariables": 4,
"distanceXMaximumAnalytically": 3.6096311794313363,
"distanceXMaximum": 3.191955229900468,
"distanceXAverage": 0.43800102218810744,
"distanceFMaximum": 1483.6531068237502,
"distanceFAverage": 0.2211367795028989,
"distanceXNonDominatedMaximum": 3.0074930957408235,
"distanceXNonDominatedAverage ": 194.17125218574452,
"neighbourDistanceXMaximum": 0.4456562249147494,
"neighbourDistanceXAverage": 1.238361757886079E—4,
"neighbourDistanceFMaximum": 146.25549302153237,
"neighbourDistanceFAverage": 5.8994922707436544E-5,
"averageProportionOfDominatingNeighbours": 0.235625,
"averageProportionOfDominatedNeighbours": 0.205625,
"averageProportionOfIncomparableNeighbours": 0.30875,
"averageProportionOfLocallyNonDominatedNeighbours": 0.4209375,
"averageProportionOfSuportedLocallyNonDominatedNeighbours": 0.1584375,
"neighboursCorrelationOfAverageDistanceX": 0.081875,
"neighboursCorrelationOfAverageDistanceF": 0.159375,
"proportionOfNonDominated": 0.03875,

"rankMaximum": 2,

"rankAverage": 0.3225,

"rankEntropy": 1.0190924654082565

91": {

"sampleSize": 1400,

"numberOfObjectives": 9,

"numberOfVariables": 7,

"distanceXMaximumAnalytically": 2.6499245272271437,
"distanceXMaximum": 2.2544270245973133,

"distanceXAverage": 0.46482071474670555,

"distanceFMaximum": 161.90958649715395,

"distanceFAverage": 0.16001637801620344,
"distanceXNonDominatedMaximum": 2.2544270245973133,
"distanceXNonDominatedAverage ": 330.4709386002521,
"neighbourDistanceXMaximum": 0.534838024563182,
"neighbourDistanceXAverage": 1.068143117153318E—4,
"neighbourDistanceFMaximum": 132.32731806260333,
"neighbourDistanceFAverage": 8.52498461288246E-5,
"averageProportionOfDominatingNeighbours": 0.054591836734693866,
"averageProportionOfDominatedNeighbours": 0.03887755102040838,
"averageProportionOfIncomparableNeighbours": 0.763673469387763,

"averageProportionOfLocallyNonDominatedNeighbours": 0.8222448979591944,

"averageProportionOfSuportedLocallyNonDominatedNeighbours": 0.013979591836734678,

"neighboursCorrelationOfAverageDistanceX": 0.04530612244897945,
"neighboursCorrelationOfAverageDistanceF": 0.13918367346938756,
"proportionOfNonDominated": 0.6264285714285714,

"rankMaximum": 1,

"rankAverage": 0.018571428571428572,

"rankEntropy": 0.13334260218394456

Listing 4.1: Output of moorphology for the characterization of the landscape of the RE21
and RE91 multi-objective problems.
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Figure 4.1: Shapiro-Wilk normality test applied to the COCO instance formed by func-
tions f001 and f002 of the bbob-biobj problem suite. Graphs in blue means the charac-
teristic follows a normal distribution according to the Shapiro-Wilk normality test, red
means it does not.

to benchmark and compare continuous optimizers, also known as non-linear
solvers for numerical optimization [[61]]. The bi-objective bbob-biobj test suite
is COCO’s first multi-objective test suite with 55 noiseless, scalable bi-objective
functions that come from the combination of 10 mono-objetive functions of the
original bbob that include separable, unimodal and multimodal functions.

Secondly, a similarity measurement between different multi-objective prob-
lems is defined and later evaluated against expert knowledge to verify that the
set of characteristics is expressive enough for the objectives of this PhD thesis.

4.4.1 Evaluation of the stability over the COCO bi-objective
suite
In this section, a statistical analysis on the selected characteristics is applied to

verify the stability of their results. If some of the characteristics are not stable
(their values are too dependent on the specific sampling obtained), they are not
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Characteristic Mean Stdev Variance Is gaussian  P-value Stat

inf avg neig 0.15698 0.00924 8.5352e-05 Yes 0.46918 0.98756
sup_avg_neig 0.25605 0.00892 7.9492e-05 Yes 0.79468 0.99171
inc_avg_neig 0.08697 0.00954 9.1105e-05 Yes 0.15496 0.98102
Ind_avg_neig 0.12441 0.01298 0.00016849  Yes 0.72547 0.99083
Isupp_avg neig  0.18427 0.01037 0.00010763  Yes 0.85161 0.99249
dist_f avg 0.32303 1.3556e-07 1.8375e-14 Yes 0.26639 0.98409
dist_f max 1.0491e+10 4372.89 1.9122e+07  Yes 0.38298 0.98626
dist_x_avg 0.38465 0.00608 3.7005e-05 Yes 0.64535 0.98985
dist x_max 270.28 4.1822 17.491 Yes 0.67746 0.99024
dist x nd_avg 61.211 19.368 375.13 Yes 0.84707 0.99243
dist_ x_nd_max 171.61 24.835 616.80 No 8.8167e-05  0.93491
dist_f avg neig 8.4385e-05 8.7613e-05 7.6760e-09 No 5.6009e-10  0.81317
dist_f max_neig  2.5436e+09 5.4518e+08 2.9722e+17 No 0.00054 0.94760
dist x_avg neig  4.7941e-05 2.0107e-05 4.0427e-10 No 0.00978 0.96561
dist x_max_neig  15.865 2.0422 41705 No 0.00173 0.95516
n_cons 0 0.0 0.0 Yes 1.0 1.0
n_obj 2 0.0 0.0 Yes 1.0 1.0
n_var 2 0.0 0.0 Yes 1.0 1.0
nd_n 0.00995 0.00395 1.5623e-05 No 0.00030 0.94362
rank avg 0.38233 0.01836 0.00033716  Yes 0.07423 0.97697
rank_ent 0.95865 0.01253 0.00015700  Yes 0.15355 0.98097
rank max 1 0.0 0.0 Yes 1.0 1.0
sample_size 400 0.0 0.0 Yes 1.0 1.0

Table 4.2: Summary of Statistical Analysis for all characteristics for the problem formed
by functions f001 and f002 of the bbob-biobj problem suite.

interesting for the purposes of this thesis.

To evaluate the stability of the characteristics, first, for each of the 55 COCO
multi-objective problems, 100 independent samplings are computed. Secondly,
the 100 samplings for each problem are evaluated by the Shapiro-Wilk [[136]
normality test, and, finally, the mean, variance and standard deviation are cal-
culated for each pair, characteristic-problem, that follows a normal distribution.
These metrics provide the quantitative data required for evaluating the stability
of the proposed characteristics.

Figure [4.1] showcases the visual representation of the normality test results
for a specific problem (bbob_f001 i03 d02 bbob f002 i05 d02), while Table
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shows the statistical results.

From the experiment the following conclusions could be extracted. Firstly,
landscape characteristics related to the distance with other solutions of the neigh-
borhood do not follow a normal distribution and, as such, are not ideal for com-
paring the similarity of two problems. This is due to the inherent randomness be-
tween several samplings. For example, on the maximum distance on the variable
space between the non-dominated solutions, for a specific problem in Figure
the values are very spread across the range of possible values. Secondly, some
of the characteristics are deterministic, such as the number of objectives, vari-
ables and constraints, the maximum distance in variable space when calculated
analytically and the maximum rank. The determinism of this characteristics can
prove useful for filtering problems before doing a similarity search, as defined in
the following section.

4.4.2 Evaluation on the similarity between problems

This section provides a qualitative evaluation of the set of characteristics imple-
mented by defining a similarity metric between multi-objective problems based
on said characteristics and comparing it to previous experiences from experts of
the field.

The similitude between problems is defined as the sum of absolute differences
between normalized values of corresponding characteristics of the two problems.
The normalization is done by dividing the smaller value by the larger one for
each characteristic, subtracting this ratio from 1, and then taking the absolute
value. This distance can be formally defined as follows:

Given two problems, P, and P, and a set of characteristics C' = {cy, ¢a, ..., ¢, }
where ¢; is a characteristic (as shown in Table 4.1), the distance D(P;, P») be-
tween the problems is computed using Equation [4.1]

o B min(c; (1), ¢;(12))
DR, ) =2 = Py, eBy))

i=1

4.1)

Here, ¢;(P) denotes the value of characteristic ¢; for problem P. The function
min and max provide the smaller and larger values, respectively, between ¢;(P;)
and c¢;(P,). The closer this metric is to 0, the more similar the two problems
are in terms of their topology. An implementation of this distance in SPARQL is

provided in Listing
Figure shows the similarity of each problem in the DTLZ, GLT, LZ09, UF,
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Problem

Problem

Figure 4.2: Similitude for the problems of the DTLZ, GLT, LZ09, UF, WFG and ZDT
family by using the defined metrics.
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WFG and ZDT families against the rest of the studied problems. The results
looks promising, as the diagonal shows a strong similarity, that means that ev-
ery problem is similar to itself, and there are clear clusters of similar problems
inside most families of problems. These clusters suggest that authors of bench-
mark problems introduce biases inside the different problems of the same family,
maybe due to reusing of functions between different problems.

Other important details are the similarities between some of the different
families of problems. Firstly, we can see that LZ09 and UF problem family have
some similarity between them. A further study indicates that some of the LZ09
where later reuse in the UF problem family, for the CEC 2009 competition [[170].
Also, the LZ09 problem families and the ZDT 1-3 problems are also similar. This
fact may be due to how they share the same Pareto front, even though the land-
scape to get there is unrelated.

To delve deeper into a smaller set of problems, let’s focus on the ZDT prob-
lem family. It is known that the ZDT4 behaves differently than all others, as it
is the only multimodal problem in its family [[112] and ZDT6 as the solutions of
the Pareto front are not uniformly separated. This is reflected in the similitude
matrix, as ZDT4 and ZDT6 are the least similar to the rest. To enter in more
detail on the similitude inside this family of problems, Figure shows the sim-
ilarity between the ZDT family problems in each of the landscape characteristics
defined using as reference the ZDT1 and ZDT4 problems.

When using the ZDT1 as reference, the main difference observed with the
ZDT4 and ZDT6 problems are in the absolute distance related metrics, both in
search and objective spaces. When using as reference the ZDT4, a similar rela-
tion can be seen, but in this case the ZDT4 problem is not close to any of the
others. From these plots, the problem family can be split in 3 groups according
to their landscape, ZDT 1-3 as they are fairly similar between them, and then
both ZDT4 and ZDT6 in a different group each, as they are do not share the
distance related metrics with any of the others.
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Chapter 5

Automatic Generation of Quality
Algorithmic Configurations for
Metaheuristics

To automatically generate suitable configurations for multi-objective metaheuris-
tics, this chapter proposes to approach the auto-configuration of multi-objective
optimization algorithms by meta-optimization, that is using a metaheuristic to
optimize the parameters of another metaheuristic. The idea is to formulate
the configuration of a multi-objective metaheuristic as an optimization problem
where the decision variables are the algorithm parameters and the objectives are
defined as quality indicators.

A study on using the NSGA-II algorithm as an automatic configuration tool to
find configurations for the NSGA-II to validate the proposed approach. Then, a
new auto-configuration tool, Evolver, utilizing this approach is presented based
on the jMetal framework. Evolver is used to populate the recommendation sys-
tem proposed in this PhD thesis.

65
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5.1 Introduction

As previously mentioned, the quality of the Pareto front approximations found by
multi-objective evolutionary algorithms is affected by the values of their control
parameters. This means that, given a set of problems to be optimized and a given
algorithm, the user has to fine tune the algorithms parameters to get accurate
results. The approach commonly adopted to carry out this task is to try to adjust
the parameters manually by conducting pilot tests, which is a trial-and-error
strategy. Furthermore, this process requires knowledge of the algorithm, which
users who are experts in other domains do not usually possess. The consequence
is that those users are likely to end up selecting a well-known algorithm, typically
NSGA-II [35], with default settings.

In this context, the recommendation system described in this PhD thesis aims
to help those users to find suitable configurations to solve their problems. How-
ever, the recommendation system requires enough evaluated configurations to
power the recommendations. To solve the problems of finding automatically
suitable configurations to solve specific problems, an active research line is au-
tomatic algorithm configuration [73], consisting in taking a set of problems as
training set to find a particular parameter configuration of the parameters to a
produce version of the algorithm that, configured with them, can solve those
problems efficiently. An extension of this idea is automatic algorithm design,
where not only parameters but also algorithmic components can be combined to
design a new algorithmic variant. An advantage of these approaches is that they
can be supported by tools that help to find the configurations automatically, such
as irace [103]], paramlILS [77]], GSF [166] and SMAC3 [96]]. Focusing on multi-
objective evolutionary algorithms, irace has been applied in several works [[11,
12, 115].

In this chapter, a study is conducted about the use of NSGA-II to find config-
urations of NSGA-II, i.e., using NSGA-II as meta-optimizer [[117]]. The basic idea
is to consider the auto-design of NSGA-II as a multi-objective problem, where
the decision variables represent parameters and components and the objectives
can be combinations of quality indicators [174].

This motivation stems, first, from previous experiences in automatic design
of multi-objective metaheuristics, which are based on combining the jMetal opti-
mization framework [[41, |113] with irace to find configurations of NSGA-II [43,
114] and particle swarm optimizers [40]. Second, a recent survey [73] that
remarked as future research prospects easy-to-use algorithm tuning and multi-
objective approaches.
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This study intends to answer these two research questions:

* RQ1: how complex is to build the meta-optimization package?. The objec-
tive is a simple and easy-to-use software solution.

* RQ2: can accurate configurations be found? The search capabilities of
the meta-optimizer must be validated by conducting representative exper-
iments.

Following the validation of this approach, Evolver [[] is introduced as a tool
aimed at automatically configuring and designing metaheuristics for solving multi-
objective optimization problems [[28]. This approach leverages the similarities
between the optimization problems faced by metaheuristics and the problem of
configuring and designing them.

Evolver is implemented in Java as a Maven package and built upon jMetal [41,
113], a framework for multi-objective optimization using metaheuristics that im-
plements highly configurable versions of representative multi-objective solvers.
These solvers include representative algorithms of three types of multi-objective
evolutionary algorithms: NSGA-II [35]], MOEA/D [89]], and SMS-EMOA. These
algorithms represent approaches based on Pareto dominance, decomposition,
and quality indicators, respectively.

Integrating Evolver with jMetal gives users access to a wide range of algo-
rithms that can be used as meta-optimizers as well as to a large amount of
benchmark problems (the current version of Evolver is aimed at solving contin-
uous problems); any continuous problem implemented with jMetal can be used
by Evolver. Additionally, jMetal offers a diverse set of quality indicators that can
measure the solution quality of a multi-objective problem according to differ-
ent properties, such as convergence and diversity in the decision space. These
indicators can be used in various combinations as optimization objectives of a
meta-optimizer. As a result, Evolver allows researchers to study the effective-
ness of different meta-optimizers and the influence of using varied objectives
when configuring and designing metaheuristics. Additionally, the proposed tool
has a user-friendly graphical interface that simplifies the selection and execution
of both the meta-optimizer and the algorithm to be configured, along with the
choice of optimization goals.

The rest of this chapter is organized as follows. First, Section provides a
review of related works in the literature. Section[5.3|provides a detailed descrip-
tion of the presented approach for the automated design of a meta-optimizer
for NSGA-II. In Section the results of the study conducted to validate this

Available at: https://github.com/jMetal/Evolver
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proposal are presented. The findings and implications of these experiments are
discussed in Section [5.51

After the validation of the proposal, Section delves into the development
of a software tool for meta-optimization, Evolver. Section [5.7] shows an example
of how a end-user could use Evolver, while Section|5.8|discusses how this tool can
impact researchers. Finally, Section [5.9 proposes a different promising approach
and sets the stage for future research beyond the scope of this PhD thesis.

5.2 Related works

A recent survey on automatic parameter tuning methods for metaheuristics [73]]
analyzed the advantages and shortcomings of different methods, and highlighted
research prospects in the field. The survey noted the need for an easy-to-use
algorithm tuning toolbox, as most existing auto-configuration tools require the
use of the command line and scripts, lacking a visual user interface. Additionally,
the survey indicated that a challenge that is worth to be studied is multi-objective
tuning approaches, which involve optimizing more than one performance metric
simultaneously.

When focusing on multi-objective optimization, automatic parameter tuning
has been applied to multi-objective variants of ant colony optimization [102],
evolutionary algorithms [11, (121} |13], and particle swarm optimization [95,
40]]. While some of these studies are based on ad hoc techniques, the upsurge of
automatic parameter configuration and design tools is proving useful for practi-
tioners. Notable packages include irace [[103]], SMAC3 [96], and ParamILS [77]].
These tools are designed to deal with a single performance objective, while
SMACS3 (since version 1.2) and the multi-objective extension of ParamILS (MO-
ParamILS[16]]) support the optimization of two or more competing performance
indicators.

Comparing Evolver to MO-ParamILS and SMAC3, there are noticeable differ-
ences. MO-ParamlLS utilizes a multi-objective iterated local search process with
a non-dominated configurations archive, while Evolver supports a wide range of
multi-objective metaheuristics. SMAC3 uses a Bayesian Optimization and uti-
lizes a mean aggregation strategy, aggregating several objectives into a single
scalar objective that is then optimized by SMAC3, while the metaheuristics of
Evolver yield as a result fronts of non-dominated solutions according to the de-
fined objectives. Furthermore, Evolver is designed for the specific task of finding
configurations of multi-objective metaheuristics, making use of the large set of
resources (algorithms, problems, quality indicators) that are not provided by
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Parameter/Component Type Domain Dependency
algorithmResult c {EA, population}
populationSizeWithArchive i [10, 200] algorithmResult == EA
externalArchive [ {CD, unbounded} algorithmResult == EA

offspringPopulationSize i [1, 400]

selection c {tournament, random}
selectionTournamentSize i [2, 10] selection == tournament
createlnitialSolutions c {random, LHS, scatterSearch}
crossover c {SBX, BLX_ALPHA, WA}
crossoverProbability r [0.0, 1.0]
crossoverRepairStrategy c {random, round, bounds}
sbxDistributionIndex r [5.0, 400.0] crossover == SBX
blxAlphaCrossoverAlphaValue r [0.0, 1.0] crossover == BLX ALPHA
mutation c {uniform, polynomial, LP, NU}
mutationProbabilityFactor r [0.0, 2.0]
mutationRepairStrategy c {random, round, bounds}
polynomialMutationDistributionIndex r [5.0, 400.0] mutation € {polynomial, LP}
uniformMutationPerturbation r [0.0, 1.0] mutation == uniform
nonUniformMutationPerturbation r [0.0, 1.0] mutation == NU

Table 5.1: Design space of the

(c)ategorical, (i)nteger, (r)eal.

LHS; latinHypercubeSampling,

nonUniform)

other frameworks.

configurable NSGA-II algorithms in Evolver.

Types:

(EA; externalArchive, CD; crowdingDistanceArchive,
WA; wholeArithmetic, LP; linkedPolynomial, NU;

5.3 Meta-optimization approach

The process of auto-designing evolutionary algorithms requires three elements:
the design space, an algorithmic template, and an auto-design tool. These ele-
ments are described next, including the approach to handling them.

5.3.1 Design space

The design space is composed of the algorithm parameters and components,
their types, allowed values, and, optionally, constraints. In the case of NSGA-II,
consider a flexible definition of it, in which a multi-objective evolutionary al-
gorithm adopting a replacement strategy based on dominance ranking and the
crowding distance density estimator is considered a NSGA-II variant. Table
defines the design space of this NSGA-II, which is similar to the ones used in for-
mer works [115],/114] (please refer to these references for a detailed explanation
of the parameters and components).

An example of parameter is the offspring population size, which is an inte-
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ger variable taking values in the range [1, 400] (a value of 1 would lead to a
steady-state version of NSGA-II). Examples of components are the crossover and
mutation operators. Each operators can in turn also have specific parameters,
such as the distribution index for SBX crossover.

A design decision is whether NSGA-II uses an external archive (i.e., an auxil-
iary population) or not. If the population size is P, the idea is that any evaluated
solution is inserted into the archive, which keeps only non-dominated solutions,
and the result of the algorithm would be P solutions from the archive; in this
case, the population size is not fixed and it can take a value between 10 and
200. The external archive can be bounded (the crowding distance is used as
density estimator to remove solutions when the archive size is greater than P)
or unbounded (in this case, all the evaluated solutions are inserted and, when
the algorithm finishes, P evenly spread solutions are returned).

5.3.2 Algorithmic template

Since release 6.0, jMetal includes a jmetal-auto package containing an implemen-
tation of NSGA-II, called AutoNSGAII, which can take any valid combination of
the parameters and components of Table generating different NSGA-II ver-
sions.

The input of AutoNSGAII is a string containing all the parameter names and
their values. This string is parsed internally and AutoNSGAII is configured with
the parameter values and the components specified in the string. An exam-
ple of a subset of this string is the following: “—archiveResult externalArchive
—offpringPopulation 40 —selection tournament ...”

5.3.3 Meta-optimizer

In previous works from the literature combining jMetal with irace [43, 114], the
finding of configurations is based on running irace, which generates combina-
tions of valid configurations according to the design space. For each configu-
ration, irace runs AutoNSGAII, which returns as a result the value of a quality
indicator; this value is taken by irace as a measure of the quality of the configu-
ration.

As the goal is to replace irace by the NSGA-II algorithm implemented in
jMetal, which would act as meta-optimizer, it is necessary to formulate and im-
plement the optimization problem that would to be solved by the meta-optimizer.
This problem has the following parameters:
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List of problems used as training set.

List of quality indicators, being each indicator an objective to be minimized.

The population size of AutoNSGAII.

The stopping condition of AutoNSGAII (in terms of number of evaluations).

Number of independent runs of AutoNSGAII for each configuration to be
evaluated.

To define the problem encoding, the approach adopted is simple: every pa-
rameter of Table is represented as a real value in the range [0.0, 1.0], so the
solutions are composed of 18 decision variables. When a solution has to be eval-
uated, the variables are decoded to construct the parameter string that is used
when calling AutoNSGAII. The decoding is done as follows:

* Real parameter: the value is scaled up from [0.0,1.0] to the range of the
parameter (e.g.,. [5.0,400.0] in the case of the SBX distribution index).

* Integer parameter: same procedure as for real parameters, but the result-
ing value is truncated.

* Categorical parameter: the interval [0, 0, 1,0] is divided into sub-intervals
according to the number of parameter values, and the index of the sub-
interval is used to obtain the actual categorical value.

Once the parameter string is decoded, AutoNSGAII is called to solve all the
problems of the training set as many times as the number of independent runs.
For each obtained front, the quality indicators are computed and the resulting
objectives values of evaluating a configuration is the median of the median of
the quality indicators of all the problems of the training set.

Let’s focus on the pros and cons of this approach. Starting by the cons, param-
eter constraints are not being considered, so all the elements of design space are
included although some of them may be ignored (e.g., the uniform perturbation
is useless if the selected mutation operator is polynomial), and the discretization
of categorical parameters using sub-intervals can lead to different solutions be-
ing equivalent if all variables have the same values except one corresponding to
a categorical parameter whose values are in the same sub-interval. As advan-
tages, the encoding is very simple and any multi-objective algorithm in jMetal
able of solving continuous problems can be used as meta-optimizer.
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5.4 Experimental study

The intention is to empirically validate this approach through a series of experi-
ments, which are categorized into two distinct scenarios. These experiments are
described below, detailing their purpose, expected outcomes and results.

The meta-optimizer is configured with the additive epsilon (EP) and nor-
malized hypervolume (NHV) quality indicators as the objective functions to be
minimized. The first indicator measures the convergence of a Pareto front ap-
proximation while the second one takes into account both convergence and di-
versity [[174]. NHV is used instead of plain hypervolume as for this latter, the
bigger its value the better, while jMetal minimizes objective functions by default.
NHYV is defined as 1.0 minus the hypervolume of the front divided by the hyper-
volume of the reference front.

The meta-optimizer has been configured using common parameter values
associated with NSGA-II. The population size is 50 and the variation operators
are SBX crossover (with probability 0.9 and a distribution index value of 20.0)
and polynomial mutation (with probability 1/n, being n the number of decision
variables of the problem, and a distribution index value of 20.0). The stopping
condition is set to 3000 function evaluations. The NSGA-II implementation in
jMetal can be executed in parallel both using a synchronous or an asynchronous
scheme [42].

Next, let’s define two scenarios and three experiments.

5.4.1 Scenario 1: Finding Configurations for Single Problems

The first scenario is aimed at determining whether an meta-optimization ap-
proach is able of finding well-performing configurations of NSGA-II for single
problems. For that, experiments focus on two problems:

* Experiment 1 - problem ZDT4: this problem [175] is a bi-objective multi-
frontal problem, whose default configuration consists of 10 decision vari-
ables. The standard NSGA-II has difficulty in providing Pareto front ap-
proximations with a uniform spread of solutions. Previous studies [43]]
have shown that using a steady-approach can significantly improve the di-
versity of the fronts. Pilot tests also indicate that comparable improvements
can be achieved when using an external bounded archive.

* Experiment 2 - problem DTLZ3: This problem belongs to the DTLZ bench-
mark [36]]. It is formulated with a default configuration consisting of
twelve decision variables and three objectives. DTLZ3 is also a multi-modal
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problem with a convex Pareto front. The study presented in [[115] showed
that both, NSGA-II and the AutoNSGAII, configured with irace were un-
able to find accurate approximated fronts in terms of convergence and di-
versity for this problem. According to other works [79]], NSGA-II is able
of finding accurate fronts for problem DTLZ2 when using an external un-
bounded archive and retrieving from it a subset of evenly distributed solu-
tions. DLTZ2 is not multi-modal but shares many similarities with DTLZ3
(i.e., convex Pareto front, three objectives, and twelve decision variables).
The objective here is twofold: 1) to determine whether the meta-optimizer
is able of finding a configuration to effectively solve DTLZ3; and, 2) to
check if that configuration includes an unbounded archive.

5.4.2 Scenario 2: Finding Configurations for Sets of Problems

The above scenario must validate the potential of auto-configuration applied to
optimize single problems. The found configurations may be, however, too spe-
cific to that particular problem, and perform poorly for other problems (overfit-
ting). The second scenario addresses this issue by auto-configuring the algorithm
on a set of problems instead of just one. Additionally, the obtained configurations
are validated using different sets of problems.

* Experiment 3 - WFG benchmark: This experiment aims to replicate the
study presented in [115]. NSGA-II is configured for optimizing the nine
problems of the WFG suite [75]], which are training set. The found con-
figurations are later used to solve both the WFG problems and the seven
instances of the DTLZ family problems-the validation set. All the problems
in this experiment are formulated as bi-objective ones.

5.4.3 Results

This section reports and analyze the results obtained on the three defined exper-
iments. In all the cases, the number of independent runs per configuration is set
to 3.

Experiment 1

The stopping condition of AutoNSGAII is set to 15000 function evaluations. Fig-
ure shows computed fronts by the meta-optimizer at 1000, 2000, and 3000
evaluations. As shown, the final front is composed of only one solution, and
the figure suggests that the meta-optimizer might not have converged in the
performed evaluations. The found design in this experiment (see Table



74 CHAPTER 5. FINDING QUALITY ALGORITHMIC CONFIGURATIONS

Parameter NSGA-II Exp. 1 Exp. 2 Exp. 3
populationSize 100 100 100 100
createlnitialSolutions random LHS scatterSearch random
algorithmResult population externalArchive  externalArchive externalArchive
externalArchive - CD unboundedArchive  CD
populationSizeWithArchive - 106 58 61
offspringPopulationSize 100 60 130 68

crossover SBX SBX SBX BLX_ALPHA
crossoverProbability 0.9 0.991 0.942 0.858
crossoverRepairStrategy random round random bounds
sbxDistributionIndexValue 20.0 5.11 70.479 -
blxAlphaCrossoverAlphaValue - - - 0.547

mutation polynomial  polynomial uniform linkedPolynomial
mutationProbabilityFactor 1 0.76 0.699 0.161
mutationRepairStrategy random bounds round round

PMDI 20 32.23 - 11.335
uniformMutationPerturbation - - 0.417 -

selection tournament tournament random tournament
selectionTournamentSize 2 9 - 4

Table 5.2: Best configuration found for the NSGA-II on each experiment. (LHS; latin-
HypercubeSampling, CD; crowdingDistanceArchive, PMDI; polynomialMutationDistri-
butionIndex)

includes a bounded external archive with crowding distance; as commented be-
fore, the use of this kind of archive is known to be beneficial for converging and
for achieving a front of evenly spread solutions.

AutoNSGAII with the obtained configuration is compared with NSGA-II with
default settings next. The stopping condition is set to 25000 function evalua-
tions in both cases and compare the Pareto front approximations computed by
both algorithms. The front computed with the found configuration (Figure
right) has a noticeable better convergence and spread than the approximation
computed by NSGA-II with standard the default setting (Figure left).

Experiment 2

In this experiment, the stopping criterion for AutoNSGAII has been raised to
20000 evaluations. Figure shows the approximation fronts computed after
1000, 2000 and 3000 evaluations. In this case, the figure suggest that the meta-
optimizer has almost converged after performing the 3000 function evaluations.
The computed approximation front consists of twelve points. The configuration
corresponding to the point with the lowest NHV value (on the right end) is in-
cluded in Table As expected, the configuration found by the meta-optimizer
uses the unbounded external archive.

Figure [5.4] compares the approximation front computed with NSGA-II and
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Figure 5.1: Problem ZDT4. Evolution of the front generated by the meta-optimizer.
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Figure 5.2: Problem ZDT4. Pareto front approximation found by the standard NSGA-II
(left), and Pareto front approximation found by the auto-designed NSGA-II (right).
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the one computed with the configuration found the meta-optimizer using Au-
toNSGAIL. In both cases, 40000 function evaluations is used as the stopping cri-
terion. The graph shows remarkable differences between the front computed by
NSGA-II (poor convergence and coverage of the Pareto front approximation) and
AutoNSGAII.

Experiment 3

In alignment with existing work [115], the stopping criterion of AutoNSGAII is
set to 25000 evaluations for this experiment. The evolution of the fronts over
different number of evaluations is shown in Figure As in the previous ex-
periment, the point with the minimum NHV value is taken and its corresponding
configuration is used to compare with the results reported in [115]]. The compar-
ison in this case includes NSGA-II, and SMPSO [110] with their default settings
and AutoNSGAII with the mentioned configuration.

The chosen configuration from the meta-optimizer is summarized in Table
Interestingly, this configuration is similar to the one computed in [115]: both
share the use use BLX ALPHA crossover and an external bounded archive).

Table showcases the validation results of the auto-designed NSGA-II for
the WFG and DTLZ benchmarks. Tables (a) and (b) contains the hypervolume
indicator values and Tables (c) and (d) the epsilon ones. As a general remark,
the configurations found by this proposal yield similar indicator values (each cell
includes the median of 25 independent runs) than those presented in previous
work [115]. Additionally, this results are also supported by the Wilcoxon rank
sum statistical test for significance. The results of the Wilcoxon test are included
in Table Statistical confidence has been found in most of the results.

5.5 Discussion on the proposed experiments

After conducting the two defined experiments, the two research questions for-
mulated in the introduction are revisited, and an attempt is made to answer
them based on the results obtained.

5.5.1 Research Questions

This section includes the answers to the research questions formulated on the
introduction.
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Figure 5.3: Problem DTLZ3. Evolution of the front generated by the meta-optimizer.

Figure 5.4: Problem DTLZ3. Pareto front approximation found by the standard NSGA-II
(left), and Pareto front approximation found by the auto-designed NSGA-II (right).
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NSGAIL SMPSO AutoNSGAII NSGAII SMPSO AutoNSGAII

WFG1 4.35¢ — 0118, 01 1.17¢ — Olgge_o3 WFG1 4.49¢ — 0176002 1.16e — 017703
WFG2 5.6le — 01136_03 5.6le — 011_55_03 WFG2 5.64e — 01955—04 5.62e — 011_26_03
WFG3  4.92¢ — 0lgsc_04  4.92¢ — 0161004 WFG3 4.41le — 0138, o4 4.41e — 0139, 04
WFG4  2.17e — 0137004 2.03e — 0124003 WFG4 2.03e — 0124603
WFG5  1.95¢ — 0135004 WFG5  1.95¢ — 012.9c—04
WFG6 2.0le — 0113002 WFG6 2.03e — 0lgge_03
WFG7  2.09¢ — 0l55c—04 WFG7  2.09¢ — 0135004  2.09¢ — 0139604
WFG8  1.47e¢ — 0ly70 03 WFG8 [ 1.48¢ — 0135002 1.48¢ — 0110c 03
WFG9  2.37¢ — 011803 WFG9  2.37e — 0l39.—03 2.35¢ — 0lgoe—o4
DTLZ1 4.88¢ — 0179003 DTLZ1  4.66e — 016c—01
DTLZ2 2.09¢ — 014704 DTLZ2 2.09¢ — 012704
DTLZ3  0.00e + 00 g.—02 DTLZ3  0.00e + 000.0c+00
DTLZ4 2.09¢ — 0153001 = 2.10e — 0lg.7.—05 DTLZ4 2.10e — 0173004  2.10e — 01y 5004
DTLZ5 2.11le — 0l34¢-04 2.12e — 015904 DTLZ5 2.11le — 0l3zse—04  2.12e — 0113004
DTLZ6 1.82¢ — 0l36e_02 2.12¢ — 0lg 105 DTLZ6 1.89¢ — 051.4¢_03 2.12¢ — 0lg.9c—05
DTLZ7 3.34e — 013.0c—04 DTLZ7 3.29¢ — 0logc—04 = 3.30e — 0lgge—05

2,17 = Oileygqp
1.96¢ — 011,96_04
2.08¢ — 011 30—02

1.96e — 01g.gc—05
2.02e — 011 4602

2.09¢ — 012.79_04

1.40e — 013.1c—03 1.39¢ — 012303

2.35¢ — 015.8.—04

0.00e + 004.9c—01 0.00e + 00¢.0e-+00

2.10e — 0Ly ge_o4

2.10e — 011 504

0.00e + 009,000 0.00e + 009,000

3.35¢ — 01g.2c—05

(a) Current study results using as objective the (b) Results obtained from [115]] with irace us-
hypervolume indicator. ing as objective the hypervolume indicator.
NSGAII SMPSO AutoNSGAII NSGAII SMPSO AutoNSGAII

WFG1 | 2.94e — 0lo7e_01  4.56e — 011 .30_02 WFG1  4.52¢ — 0134c01  4.55¢ — 01gge—o3
WFG2 1.8l — 0ly7e_o1 | 6706 = 035500 WFG2 | 5.4le — 0354005 6.04¢ — 0311005
WEFG3  1.33e — 0238003  7.39¢ — 0384004 WFG3  3.34¢ — 0l53.04 = 3.34€ — 011904
WFG4 1.21e — 0236.03 2.19¢ — 024003 WEFG4  1.29¢ — 0259, 03 2.16¢ — 0234003
WEG5  3.31e — 0258003 | 2.78¢ — 0230, 04 WFG5  3.3le — 0237c03 = 2.77€ — 0219004
WFG6  1.49¢ — 021 ge—o2 WEG6  1.50e — 025.9c—03 = 6.37€ — 034.9.—04
WFG7  1.20e — 0244003 WEFG7  1.28¢ — 0240003 = 6.52€ — 034.9.04
WFG8 | 2.44¢ = 0110001 WFG8 [1.68¢ = 011p.-01 1.69¢ — 017, oy
WFG9  1.47¢ — 0257003 WEFG9  1.42¢ — 0230003 1.10e — 029,03
DTLZ1 | 1.60e — 025.2.—03 DTLZ1 3.53e — 0215.-01
DTLZ2 1.23e¢ — 0298003 DTLZ2 1.12¢ — 024,03
DTLZ3 | 1.14e + 001 4e+00 DTLZ3 | 1.00e + 016 4¢+00
DTLZ4 1.18¢ — 029.9c—01  5.68¢ — 033.7¢—04 DTLZ4 1.18¢ — 025.4c—03 5.61e — 0331004
DTLZ5 1.14e — 0255003 5.25€ — 0395004 DTLZ5 1.01le —0222.-03 5.12¢ — 0335004
DTLZ6 2.77e — 0294002  5.22€ — 036004 DTLZ6 3.72¢ — 0l53.—02 5.15e — 0345004
DTLZ7 1.02¢ — 0235003 4.68¢ — 034.6e—04 DTLZ7 7.78¢ — 0326c—03 = 4.30e — 0323004

1.00e — 029.0c—03

6.34e — 0391004

2.45e — 011 ge—03 2.45e — 011 3.—03

1.12e — 021 2003

5.16e — 011.0c400 3.08¢ + 01y 70401

5.59¢ — 033.75,04

5.53e — 033.26704

1.16€ + 01g 40100 1.05€ + 02360101

(c) Current study results using as objective the (d) Results obtained from [[115] with irace us-
epsilon indicator. ing as objective the epsilon indicator.

Table 5.3: The cells include the median and interquartile range of 25 independent runs.
The dark-gray and light-gray background cells indicate, respectively, the best and second
best indicator values.
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(a) Current study results measuring the hyper- (b) Results obtained from [[115] with irace mea-
volume indicator. suring the hypervolume indicator.
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(c) Current study results measuring the epsilon (d) Results obtained from [[115] with irace mea-
indicator. suring the epsilon indicator.

Table 5.4: Wilcoxon rank sum test results. The symbols in each cell correspond to
problems WFG1-9 and DTLZ1-7. The symbols indicate: “~” no statistical significance,
“A” the algorithm in the row has a better indicator value than the algorithm in the row
with confidence and “v” the algorithm in the row has a worse indicator value than the
algorithm in the row with confidence.
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Figure 5.5: WFG problem family. Evolution of the front generated by the meta-optimizer.

RQ1 - approach complexity:

The proposed meta-optimization package relies only on jMetal code, so it does
not require any external tool. The AutoNSGAII template within jMetal, designed
and used in former studies, combined with irace simplifies the formulation of
the auto-design of NSGA-II as a continuous optimization problem. Researchers
familiar with jMetal are expected to benefit from the use of the meta-optimizer
with little effort.

RQ2 - finding of accurate designs:

A simple encoding has been adopted for the NSGA-II configurations consisting
in codifying each parameters as a floating point value in the range [0.0, 1.0],
and these values are further decoded into a string that used as the input of the
AutoNSGAII template. This configuration has been proved effective by the ob-
tained empirical experiments. The first two experiments showed that the meta-
optimizer has been able to generate the expected key components required by
NSGA-II to converge to the Pareto front of the selected problems. For these
experiments visual evidence is provided. Additionally, the generalization capa-
bilities of the auto-tuner were challenged by requiring it to find an accurate
configuration for a training set composed of nine problems, and validating the
found configurations on a set of additional seven problems. The experiment
shows almost identical results to the previously published work were irace was
used as auto-configuration tool.
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5.5.2 Further Remarks

The provided empirical evaluation also revealed a few issues that are worth dis-
cussing:

* The formulation of searching designs for NSGA-II as a continuous problem
opens the opportunity of using other metaheuristics provided by jMetal as
meta-optimizers. This enable the easy development comparative studies
based on configuring AutoNSGAII with different training sets.

* Although two quality indicators are used, EP and NHYV, as objectives for
guiding the search, the inclusion of additional ones (e.g., spread, inverted
generational distance, etc.) could reveal new insights regarding the con-
figurations for solving different problems.

* NSGA-II with standard settings is used as the meta-optimizer. The obtained
results in this chapter could be used in order to analyze whether its perfor-
mance could be improved if using different parameter settings.

* Only a run of the meta-optimizer has been performed in the experiments. A
deeper study should be carried out by performing a number of independent
runs and making statistical analysis of the results.

5.6 Implementing an auto-configuration tool

Following the validation of the proposal, the Evolver package was designed based
on the jMetal-auto package, eliminating the need for external tools such as irace
and thus simplifying the auto-design process for optimization problems imple-
mented within that framework.

5.6.1 Software arquitecture

The software architecture of Evolver is represented in Figure Its main com-
ponents are:

* Configurable algorithm: This is a configurable template that implements
a generic multi-objective metaheuristic. A specific algorithm can be in-
stantiated by selecting a number of modular components. For instance,
multi-objective evolutionary algorithms (MOEAs) are based on the generic
template shown in Figure 2.3

* Components and parameters: Components are modular blocks that provide
useful utilities for building metaheuristics. Figure|2.3|shows some common
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Figure 5.6: Software architecture of Evolver.

components used by MOEAs. Additionally, Evolver also implements more
specific components some MOEAs are usually built upon, such as bounded
or unbounded external solution archives. Parameters can be categorical,
integer, or real. Examples of parameters include offspring population sizes,
or probabilities for crossover and mutations operators (the latter two are
the means by which MOEA generate new solutions). The set of all the
available components and parameters and their relationships define the
design space. As an example, Table shows the design space of the
configurable NSGA-II algorithm included in Evolver.

* Meta-optimization problem: Given a configurable algorithm and its cor-
responding design space, along with a set of problems to be optimized
(i.e., the training set), the auto-configuration process is defined as a multi-
objective optimization problem. The objective is to w.l.o.g. minimize a
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number of quality indicators. As metaheuristics are stochastic-based meth-
ods, each algorithm configuration can be evaluated several times (i.e., a
number of independent runs can be executed), being the objectives the
median of the obtained indicator values. Real encoding is used to repre-
sent every parameter and component in a solution.

* Meta-optimization algorithms: These are conventional multi-objective al-
gorithms for solving continuous problems. Evolver makes use of the algo-
rithms provided by jMetal.

5.6.2 Software capabilities

Related work categorizes multi-objective metaheuristics into three categories:
dominance-based, decomposition-based, and indicator-based. Evolver already
includes the implementation of the most popular algorithm within each of these
categories: NSGA-II (dominance-based), MOEA/D (decomposition-based), and
SMS-EMOA (indicator-based). Additionally, it includes a configurable multi-
objective particle swarm optimization algorithm (MOPSO) [40], which is an-
other popular dominance-based variant.

Configurable algorithms have a greater number of components compared to
their standard versions. For example, while the standard NSGA-II only includes a
replacement strategy based on dominance ranking and a crowding distance den-
sity estimator, the implemented version by Evolver considers up to 19 different
components (see Table [A.I). The other configurable algorithms implemented
follow the same pattern. MOEA/D, SMS-EMOA, and MOPSO configuration in-
volves a set of 25, 18 and 24 components, respectively. Descriptions of these
components for MOEA/D and MOPSO can be found in Tables and re-
spectively, in the Appendix [Al The parameter space of SMS-EMOA, Table is
the same as NSGA-II except for the offspring population size. While NSGA-II it
can take a value between 1 and 400, SMS-EMOA is a steady-state evolutionary
algorithm (i.e., the value is always 1).

Evolver has a graphical user interface (GUI) in the form of a web application
that enhances the configuration and execution of experiments. The main view
of this GUI is illustrated in Figure This interface offers several convenient
functionalities to streamline the experimental process. Firstly, it provides easily
modifiable fields with descriptive labels that enable users to configure the ex-
periment according to their specific requirements. The GUI also offers real-time
monitoring capabilities, enabling users to track the progress and status of an
experiment as it executes. Additionally, the graphical user interface facilitates
the management of experiment-related data by providing a convenient option to
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download the artifacts and logs generated during the experiment.

For ease of use, both Evolver and the dashboard are also available as pre-built
Docker images [107]. By encapsulating the software in containers, the need for
manual setup and configuration is reduced, streamlining the deployment pro-
cess. This approach ensures consistent and reliable performance across diverse
environments while offering flexibility and adaptability for various deployment
scenarios, from a user’s laptop to cloud-oriented architectures.

5.7 Illustrative example

This section showcases how to use Evolver to auto-configure a metaheuristic for
solving an engineering problem. This scenario resembles the typical role of an
engineer interested in using NSGA-II to solve a specific class of engineering prob-
lem, but uncertain about how to configure it for the best outcome. With that goal
in mind, the plan is to utilize an example that has a reference front available for
training.

To simulate the mentioned scenario, the liquid-rocket single element injector
design problem described in [167] has been selected. The problem is formu-
lated with three objectives and four decision variables. As meta-optimizer, the
engineer uses the GUI to select NSGA-II with the default settings, as shown in
Figure (population size = 50, maximum number of evaluations = 2000, in-
dependent runs = 1). The objectives to minimize are the inverted generational
distance plus (IGD+) and the additive epsilon (EP).

The size of the population in the configurable NSGA-II is set by default to 100
(a common value). An important parameter to define is the stopping condition.
The recommendation in [[167] is to use as stopping condition N x 500 function
evaluations (N is the population size); however, here in this case, the condition
is set to 7,000, with the intention of reducing the running time of Evolver and
the hope that the found configuration can provide a NSGA-II variant able of
successfully solve the target problem.

Figure displays the configurations found with the best trade-off between
IGD+ and EP across different numbers of evaluations. After Evolver finishes,
let’s assume the engineer selects the configuration with the minimum IGD+ and
uses it to run NSGA-II for 20,000 problem evaluations. Figure illustrates
the reference front of the problem (top), the front obtained by NSGA-II with
standard settings (bottom left), and the front found by the configurable NSGA-
IT (bottom right). From the figure, the NSGA-II mainly finds solutions at the
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x Evolver

Evolver's source code and documentation can be found atOjMetal/Evolver.

Choose experiment - .
P General configuration
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Figure 5.7: Evolver’s dashboard while executing the liquid-rocket single element injector
design problem. The chart shows the population of the meta-optimizer after 600 func-
tion evaluations, which contains four non-dominated solutions.
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Figure 5.8: Evolution of the Pareto front approximations found by the NSGA-II meta-
optimizer in the search for a configuration of NSGA-II for the engineering problem.

border of the reference front, while the auto-configured version produces a set
of solutions uniformly distributed across the surface of the reference front.

5.8 Impact

Evolver offers a convenient and efficient solution for auto-configuring metaheuris-
tics by providing a pure Java implementation, eliminating the need for external
tools. Since Evolver uses jMetal as its main dependency, it should be easy to use
for a wide community of researchers. The main papers describing jMetal, [[41]
and [[113], currently have 1372 and 225 references, respectively, according to
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Figure 5.9: Reference front of the engineering problem (top), front obtained by NSGA-II
with standard setting (bottom left), and front obtained by the auto-configured NSGA-II
(bottom right).

Google Scholar [}

For metaheuristics experts, Evolver is an invaluable tool not only for find-
ing configurations and designing algorithms tailored to particular training sets,
but also for researching automatic parameter tuning for metaheuristics. Some
research lines that can be highlighted include:

* Finding suitable configurations for multi-objective metaheuristics is itself
a multi-objective problem. Therefore, it can serve as a basis for designing
benchmark suites that include various combinations of algorithms, quality
indicators, and training sets. This approach would enable studies focused
on searching for efficient meta-optimizers.

* Running a meta-optimization process can be a very computationally inten-

2Number of citations as of May 30th, 2024
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sive task. Therefore, improving its efficiency is of great interest [73]]. In
this regard, it is worthwhile to investigate the minimum number of evalua-
tions required by the configurable metaheuristic, given a training set. Such
an investigation can help obtain effective algorithms that are capable of
accurately obtaining Pareto fronts for the given problems.

* Evolver can generate a large amount of data that can be used to analyze
the most influential parameters of the metaheuristics being tuned, as well
as to address the search landscape characteristics of a given configuration
problem.

For problem domain expert lacking experience in multi-objective metaheuris-
tics, using Evolver through its GUI can facilitate the search of algorithm configu-
rations once the target problem is defined in terms of the guidelines provided by
jMetal. An example of this scenario is provided in the former section.

5.9 Quality-Diversity: An alternative approach for
generating algorithmic configurations

This section aims to showcase an alternative approach to auto-configuration that
has been studied during the course of this PhD. While this line of research is still
open, this section describes the proposed approach as well as some preliminary
results.

5.9.1 Introduction

In the field of machine learning, ensemble methods are a set of techniques that
combine multiple models to improve the performance and robustness over in-
dividual models [[124]. The main idea behind ensembles is that aggregating
the outputs of several algorithms will provide the ensemble the strengths while
mitigating the weaknesses of each constituent model, at the cost of higher com-
putational cost. Additionally, it has been proven empirically that ensembles pro-
vide better results when there is greater diversity between the models that form
it [142}(87].

When applied to multi-objective optimization, an ensemble of several opti-
mization algorithms can be implemented by taking the resulting non-dominated
populations of each of the constituent algorithms and merging them.

Quality-Diversity (QD) optimization is a branch of mono-objective stochastic
optimization with the goal to move beyond single optimal solution and instead
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exploring a wide range of high-quality solutions. These solutions apart from be-
ing high-quality with respect to the fitness function, they are diverse according
a one or more user-defined features [126]]. Each of these diversity features are
called behavior characteristics, as they represent how a solution solves the prob-
lem. One of the most popular state-of-the-art algorithms for Quality-Diversity is
the Covariance Matrix Adaptation MAP-Elites (CMA-ME) [49] that combines the
search capabilities of Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [62] with the MAP-Elites [[109] algorithm for maintaining diversity.

This section presents a novel approach for the auto-configuration of meta-
heuristics, where instead of searching for the best configuration to solve a set of
problems, Quality-Diversity optimization is used to find a diverse set of quality
configurations that can be used as an ensemble to improve the performance and
generalization capabilities of the individual configurations found.

This section is structured as follows. First, the proposed approach is pre-
sented in Subsection[5.9.2] then in Subsection[5.9.3|further explores the specifics
of the implementation provided. Finally, in Subsection [5.9.4| a preliminary eval-
uation is provided.

5.9.2 Quality-Diversity optimization for metaheuristics

To use Quality-Diversity for the automatic configuration of metaheuristics, first
the optimization problem must be defined. To optimize an algorithm to a spe-
cific set of problems, later referred to as training set, the fitness function of the
optimization problem will be refereed as the average normalized hypervolume
(NHV). Like in Evolver, the search space of the optimization problem are the dif-
ferent components and parameters that can configure a specific metaheuristic.
As the parameters can be both continuous or discrete, the optimization prob-
lem is of mixed-integer nature. From this point, this optimization problem will
be refereed to as meta-problem, to avoid any confusion to the problems of the
training set.

However, there are several challenges that need to be addressed. Firstly, the
behavioral characteristics that will guide the search for diversity need to be de-
fined. These behavioral characteristics must characterize the different ways to
solve the problems of the training set. For this characterization, the evolution
of the population generated by a specific configuration is monitored with the
objective of finding configurations with different behaviors, such as early or late
convergence. With this goal in mind, the selected behavioral characteristics are
the NHV at fixed intervals during the evaluation process. In the evaluation pro-
vided in this work, the NHV at the percentiles 20, 40, 60 and 80 are used as
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behavioral characteristics. As there are more than 3 behavioral characteristics,
the best way to visualize the results is using a parallel coordinates plot, as shown
in Figure|5.10

Secondly, the CMA-ES algorithm struggles with mixed-integer problems, such
as algorithmic configuration, as the smaller variance of the integer variables
leads to stagnation of the optimization process that generates new solution can-
didates via a multivariate Gaussian distribution. To overcome this challenge,
the CMA-ES with margins (CMA-ESwM) algorithm is used [|60]. This algorithm
adds a lower-bound to the marginal probabilities associated with the generation
of integer variables inside the original CMA-ES algorithm.

5.9.3 Implementation details

To implement this approach, the meta-qdo Python module has been developed.
pyribs [150] is a Python framework for the development of Quality-Diversity al-
gorithm via composing a modular set of components. meta-qdo uses the pyribs
module as the back-bone of the Quality-Diversity implementation for two main
reasons. First, the modularity of its components allows the implementation of
a new emitter to integrate the CMA-ESwM algorithm into the library. Secondly,
pyribs delegates on the user the evaluation of the set of solutions allowing to be
easily parallelized. This second benefit is used in meta-qdo by implementing an
evaluator that allows for parallel and distributed execution of the evaluation of
the population based on Dask [132], an open-source parallel computing library
in Python that is designed to scale and optimize the performance of computa-
tions, enabling efficient use of multi-core processors and distributed systems.

meta-qdo provides a common interface to implement the meta-optimization
problem and currently offers implementations for the jMetal and jMetalpy frame-
works. In this work, the focus is on the Java-based version of jMetal as it provides
more configurable algorithms.

For the evaluation of each instance, the evaluation of an instance is delegated
to jMetal. For this reason, the search space is almost the same as the one used
in Evolver, except for the removal of the parameters for the offspring population
and archive population sizes. As mentioned in the previous subsection, the NHV
at several fixed intervals measures the behavior of a specific instance. Due to how
jMetal works internally and the use of the observer design patter to calculate at
this fixed intervals, the offspring population size and the population size with
archive parameters must be fixed to the same size as the population.

Finally, meta-qdo provides several visualization methods and a small dash-
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META-QDO progress dashboard
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Figure 5.10: Dashboard for meta-qdo in the middle of an execution.
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NSGA-Il configuration for ZDT problems
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Figure 5.11: Parallel coordinates plot of the contents of a Quality-Diversity archive with
4 behavior characteristics measuring the progress of the NHV of the population of a
multi-objective algorithm.

board for the monitoring of the progress of the current execution, allowing the
user to visualize the diversity of the values of different parameters in relation to
another. Figure shows the execution of the optimization process from the
dashboard.

5.9.4 Evaluation of the proposed approach

To validate the proposed approach, meta-qdo is run using the ZDT problems as
the training set and later validated on the ZDT, WFG, DTLZ (with 2 objectives)
and the 2-dimensional problems from the RE family. Once the Quality-Diversity
algorithm has populated the archive, the top 10% of the elites according to their
NHV values in the archive is selected. The different behaviors found by the
Quality-Diversity algorithm can be seen in Figure [5.11, where visually several
archetypes of behaviors can be observed, ranging from configurations that con-
verge fast, and then stagnate, to the opposite.
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Configuration

WFG1

WFG2

WFG3

WFG4

conf0

confl

conf2

conf3

conf4

conf5

NSGA-II default
conf0-x6
confl-x6
conf2-x6
conf3-x6
conf4-x6
conf5-x6
NSGA-II default-x6
conf-diverse-0-5

9.11e-02 + 7.67e-02
7.45e-01 £+ 1.35e-02
4.94e-01 £ 8.57e-02
3.97e-01 £ 1.13e-01
5.63e-01 + 5.75e-02
6.10e-01 + 4.8%9e-02
6.04e-01 + 1.32e-01
1.16e-02 £ 7.04e-03
5.49e-01 + 9.69e-02
2.91e-01 + 8.68e-02
2.57e-01 + 8.30e-02
4.84e-01 £ 5.21e-02
5.42e-01 £ 5.05e-02
3.75e-01 +£ 9.13e-02
1.10e-01 £ 7.05e-02

2.17e-03 £ 7.14e-04
7.35e-03 £ 3.22e-03
7.77e-03 £ 2.67e-03
7.86e-03 £ 1.78e-03
6.57e-03 + 2.67e-03
5.83e-03 + 2.24e-03
5.77e-03 + 2.14e-03
-4.94e-04 £ 1.94e-04
1.33e-03 £ 7.96e-04
2.68e-03 + 7.85e-04
3.32e-03 + 8.24e-04
2.65e-03 + 6.09e-04
3.07e-03 + 4.12e-04
3.39e-04 + 3.82e-04
9.15e-04 + 6.20e-04

1.09e-02 + 2.48e-03
1.49e-02 £ 1.79e-03
1.22e-02 £ 1.14e-03
1.34e-02 £ 1.50e-03
1.24e-02 £ 4.15e-03
1.17e-02 £ 9.81e-04
1.44e-02 £ 1.94e-03
-1.36e-04 + 2.82e-04
3.47e-03 + 8.26e-04
3.57e-03 + 6.09e-04
4.49e-03 £ 5.57e-04
3.08e-03 + 8.58e-04
3.72e-03 + 5.58e-04
3.79e-03 +£ 8.52e-04
2.84e-03 £ 7.18e-04

3.34e-02 £ 7.31e-03
2.26e-02 + 1.83e-03
2.98e-02 +£ 5.42e-03
2.03e-02 + 2.06e-03
3.28e-02 £ 5.47e-03
3.11e-02 £ 5.03e-03
2.48e-02 £ 2.14e-03
1.38e-02 4 2.04e-03
4.63e-03 £ 7.51e-04
1.41e-02 £ 1.99¢-03
6.98e-03 + 9.00e-04
1.42e-02 £ 1.94e-03
1.30e-02 4 2.05e-03
6.87e-03 £ 5.43e-04
9.74e-03 £ 1.01e-03

Configuration WFG5 WFG6 WFG7 WFGS8

conf0 1.66e-01 + 6.04e-03  2.49e-02 + 8.85e-03 2.33e-02 + 1.70e-03 3.70e-01 + 9.03e-03
confl 1.68e-01 4 1.52e-03  7.03e-02 + 6.57e-02 2.60e-02 + 1.86e-03 3.41e-01 + 4.42e-03
conf2 1.62e-01 + 1.60e-04  5.89e-02 + 4.45e-02 2.39e-02 + 1.87e-03 3.12e-01 & 6.44e-02
conf3 1.56e-01 + 1.31e-02  4.94e-02 + 4.80e-02 2.44e-02 + 2.11e-03 3.33e-01 + 5.99e-03
conf4 1.59e-01 + 7.04e-03  4.75e-02 + 3.09e-02 2.19e-02 + 1.75e-03 3.44e-01 £ 7.40e-03
conf5 1.62e-01 4 2.23e-04  3.02e-02 + 1.03e-02 2.32e-02 + 1.38e-03 3.13e-01 + 6.81e-02
NSGA-II default 1.68e-01 + 1.94e-03  6.17e-02 + 3.45e-02 2.72e-02 £+ 2.16e-03 3.31e-01 £ 6.39e-03
conf0-x6 1.51e-01 4 6.19e-04 | 5.77e-03 + 3.21e-03 4.32e-03 + 2.27e-04 3.22e-01 = 3.34e-02
confl-x6 1.52e-01 4 1.36e-04  2.13e-02 + 5.00e-03 7.87e-03 £ 6.12e-04 3.00e-01 + 2.16e-02
conf2-x6 1.48e-01 + 6.93e-03 8.57e-03 + 2.58e-03  8.56e-03 + 6.28e-04 2.13e-01 + 7.62e-02
conf3-x6 1.35e-01 + 1.86e-02 1.72e-02 =+ 3.42e-03 1.03e-02 + 9.45e-04 2.92e-01 + 3.27e-02
conf4-x6 1.46e-01 + 6.81e-03  9.46e-03 + 3.81e-03 7.80e-03 + 4.93e-04 2.34e-01 + 7.48e-02
conf5-x6 1.49e-01 4+ 6.45e-03  1.22e-02 + 5.13e-03 8.67e-03 + 5.88e-04 2.18e-01 + 8.07e-02

NSGA-II default-x6
conf-diverse-0-5

1.52e-01 £ 3.09e-04
1.42e-01 £ 1.08e-02

2.22e-02 + 4.98e-03
1.14e-02 £ 5.44e-03

8.54e-03 + 6.56e-04
7.85e-03 + 3.40e-04

2.60e-01 + 4.77e-02
2.46e-01 + 6.63e-02

Configuration WFG9 DTLZ1_2D DTLZ2_2D DTLZ3_2D

conf0 4.58e-02 £ 1.05e-02  1.00e-00 £ 0.00e-00  2.32e-02 + 1.74e-03 | 1.00e-00 =£ 0.00e-00
confl 4.00e-02 £ 4.96e-03  9.08e-01 £+ 1.29e-01  2.88e-02 + 2.13e-03 ~ 1.00e-00 = 0.00e-00
conf2 4.06e-02 £ 1.33e-02  1.00e-00 £ 0.00e-00  2.89e-02 + 1.92e-03  1.00e-00 =+ 0.00e-00
conf3 3.85e-02 + 4.71e-03  1.00e-00 £ 0.00e-00  4.73e-02 £ 6.04e-03  1.00e-00 £ 0.00e-00
conf4 3.52e-02 + 5.37e-03  1.00e-00 £ 0.00e-00  2.87e-02 £ 2.72e-03  1.00e-00 + 0.00e-00
conf5 4.06e-02 £ 4.90e-03  1.00e-00 £ 0.00e-00  2.90e-02 £ 1.58e-03  1.00e-00 £ 0.00e-00
NSGA-II default 4.12e-02 £ 5.26e-03  8.21e-01 £ 2.94e-01  2.62e-02 + 1.58e-03  1.00e-00 =+ 0.00e-00
conf0-x6 2.26e-02 + 5.18e-03  9.98e-01 & 4.59e-03 | 4.77e-03 & 1.38e-04 | 1.00e-00 £ 0.00e-00
confl-x6 1.99e-02 £+ 2.23e-03 | 6.15e-01 £ 2.97e-01  9.23e-03 + 4.28e-04  1.00e-00 =+ 0.00e-00
conf2-x6 2.16e-02 + 2.47e-03  7.12e-01 £ 3.82e-01  1.27e-02 £ 6.34e-04  1.00e-00 =+ 0.00e-00
conf3-x6 2.13e-02 + 1.12e-03  9.77e-01 £ 6.94e-02  2.40e-02 £ 2.74e-03  1.00e-00 + 0.00e-00
conf4-x6 2.09e-02 + 3.43e-03  8.93e-01 £ 2.23e-01  1.24e-02 £ 1.26e-03  1.00e-00 + 0.00e-00
conf5-x6 2.09e-02 + 1.76e-03  7.95e-01 4 2.98e-01  1.35e-02 £ 7.15e-04  1.00e-00 £ 0.00e-00

NSGA-II default-x6
conf-diverse-0-5

1.95e-02 + 2.12e-03
1.98e-02 £ 2.51e-03

4.85e-01 £ 2.51e-01
7.70e-01 + 3.02e-01

7.47e-03 & 2.51e-04
1.05e-02 £ 6.93e-04

1.00e-00 =+ 0.00e-00
1.00e-00 £ 0.00e-00

Configuration DTLZ4_2D DTLZ5_2D DTLZ6_2D DTLZ7_2D

conf0 2.58e-02 + 1.77e-03  1.69e-02 & 1.34e-03  1.48e-02 + 1.19¢-03  1.38e-02 + 1.34e-03
conf1 4.90e-02 £ 1.67e-02  2.06e-02 + 1.44e-03  2.78e-02 + 5.28e-03  2.37¢-02 + 6.73e-03
conf2 3.46e-02 + 2.53e-03  2.29¢-02 & 1.99¢-03  8.73e-03 & 1.43e-04  1.12e-02 + 1.47e-03
conf3 7.63e-02 + 1.04e-02  3.99¢-02 £ 7.37e-03  1.09e-02 & 1.24e-03  1.84e-02 & 4.22¢-03
conf4 3.48e-02 + 2.46e-03  2.35¢-02 & 3.76e-03  8.83¢-03 & 1.42e-04  1.09e-02 + 1.74e-03
conf5 3.70e-02 + 1.71e-03  2.37e-02 & 1.90e-03  8.75¢-03  1.21e-04  1.17e-02 + 2.70e-03

NSGA-II default

2.20e-01 + 3.90e-01

1.96e-02 + 1.66e-03

1.00e-00 =+ 0.00e-00

4.86e-02 + 8.00e-03

Table 5.5: Average normalized hypervolume for each configuration and ensemble when
solving a specific problem. Highlighted in dark gray are the first best-performing algo-
rithms, while those in light gray represent the second best performers.
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Configuration

DTLZ4_2D

DTLZ5_2D

DTLZ6_2D

DTLZ7_2D

conf0-x6

confl-x6

conf2-x6

conf3-x6

conf4-x6

conf5-x6

NSGA-II default-x6
conf-diverse-0-5

7.18e-03 + 4.54e-04
1.12e-02 £ 1.50e-03
1.74e-02 £+ 6.94e-04
3.09e-02 + 3.65e-03
1.63e-02 £+ 1.25e-03
1.80e-02 £ 1.19e-03
9.48e-03 + 8.50e-04
1.40e-02 + 5.03e-04

-1.66e-03 + 2.33e-04
3.36e-03 + 1.44e-03
6.63e-03 + 6.58e-04
1.89e-02 £ 2.33e-03
6.11e-03 + 8.21e-04
7.16e-03 £+ 7.11e-04
8.98e-04 + 2.09e-04
4.41e-03 £ 9.11e-04

-3.56e-03 £ 1.70e-04
-2.13e-03 £ 3.03e-04
-4.05e-03 £ 1.99e-04
-4.01e-03 £ 1.70e-04
-4.07e-03 £ 1.94e-04
-3.98e-03 =+ 3.06e-04
1.00e-00 =+ 0.00e-00
-3.68e-03 £ 1.73e-04

5.18e-03 + 7.17e-04
2.97e-03 £ 4.12e-04
4.05e-03 £ 2.79e-04
2.64e-03 + 1.69e-04
3.79e-03 + 2.46e-04
4.24e-03 + 3.26e-04
2.80e-02 + 1.86e-03
3.48e-03 + 2.75e-04

Configuration

ZDT1

ZDT2

ZDT3

ZDT4

conf0

confl

conf2

conf3

conf4

conf5

NSGA-II default
conf0-x6
confl-x6
conf2-x6
conf3-x6
conf4-x6
conf5-x6
NSGA-II default-x6
conf-diverse-0-5

1.20e-02 £ 9.09e-04
1.49e-02 £ 2.02e-03
9.60e-03 + 7.20e-04
1.19e-02 + 1.65e-03
9.88e-03 + 6.83e-04
9.85e-03 £ 1.11e-03
4.14e-02 + 4.28e-03
4.19e-03 + 2.63e-04
2.73e-03 £ 1.17e-04
3.83e-03 + 3.89e-04
2.63e-03 + 9.64e-05
3.31e-03 £ 2.22e-04
3.95e-03 + 3.90e-04
2.95e-02 + 1.86e-03
3.33e-03 + 2.00e-04

2.15e-02 + 1.92e-03
3.78e-02 + 6.86e-03
1.90e-02 + 2.26e-03
2.69e-02 + 4.42e-03
1.69e-02 + 1.63e-03
1.91e-02 £ 1.91e-03
3.82e-01 + 2.79%e-01
8.31e-03 £ 7.26e-04
6.58e-03 + 2.57e-04
6.97e-03 + 5.21e-04
5.92e-03 + 1.82e-04
6.43e-03 + 4.06e-04
7.43e-03 & 5.80e-04
8.94e-02 + 9.95e-03
6.51e-03 + 3.15e-04

2.07e-02 + 4.88e-03
1.20e-02 £ 2.17e-03
1.40e-02 £ 3.41e-03
8.89e-03 +£ 2.42e-03
1.27e-02 £+ 2.16e-03
1.60e-02 + 4.64e-03
4.41e-02 £ 9.23e-03
9.81e-03 + 1.63e-03
1.72e-03 £ 1.68e-04
6.80e-03 + 1.43e-03
1.59e-03 + 1.53e-04
5.81e-03 + 1.48e-03
7.64e-03 + 1.03e-03
3.02e-02 £ 3.17e-03
3.64e-03 + 8.48e-04

7.68e-01 + 1.72e-01
5.40e-01 + 2.39%e-01
9.31e-01 £ 1.24e-01
9.31e-01 £ 1.11e-01
9.57e-01 + 6.68e-02
9.85e-01 + 3.22e-02
8.08e-01 +£ 1.48e-01
4.90e-01 + 2.43e-01
3.13e-01 =+ 8.80e-02
7.38e-01 + 1.32e-01
8.41e-01 £ 1.34e-01
7.02e-01 + 2.41e-01
8.40e-01 £ 1.18e-01
4.71e-01 £ 2.02e-01
6.65e-01 + 1.94e-01

Configuration

ZDT6

RE21

RE22

RE23

conf0

confl

conf2

conf3

conf4

conf5

NSGA-II default
conf0-x6
confl-x6
conf2-x6
conf3-x6
conf4-x6
conf5-x6
NSGA-II default-x6
conf-diverse-0-5

1.67e-02 £ 8.20e-04
3.83e-02 4 9.41e-03
1.17e-02 + 3.89e-04
2.64e-02 + 8.26e-03
1.16e-02 + 4.87e-04
1.16e-02 + 4.20e-04
6.03e-01 £ 5.64e-02
3.01e-03 £ 1.73e-04
1.50e-02 + 1.49e-03
2.41e-03 £ 1.55e-04
4.39e-03 + 3.63e-04
2.45e-03 + 1.80e-04
2.42e-03 £+ 1.35e-04
5.00e-01 + 2.23e-02
3.42e-03 £ 2.58e-04

1.20e-02 £ 4.90e-04
1.21e-02 £ 6.88e-04
7.66e-03 * 2.25e-04
7.43e-03 £ 1.64e-04
7.68e-03 £ 1.82e-04
7.55e-03 + 1.62e-04
1.16e-02 £ 4.57e-04
3.64e-03 + 1.05e-04
3.82e-03 £ 1.23e-04
2.36e-03 + 1.26e-04
2.25e-03 £ 7.41e-05
2.34e-03 £ 9.12e-05
2.38e-03 +£ 9.82e-05
3.53e-03 + 8.87e-05
2.60e-03 + 6.40e-05

1.52e-02 £ 7.09e-04
5.08e-01 + 4.92e-01
1.01e-02 £ 3.39e-04
1.87e-02 £ 2.19e-02
1.48e-02 £ 1.43e-02
9.89e-03 + 3.48e-04
1.59e-02 4 1.22e-03
4.69e-03 + 4.03e-04
6.51e-03 + 1.02e-03
3.15e-03 + 1.79e-04
3.16e-03 + 4.31e-04
3.13e-03 + 1.76e-04
3.15e-03 +£ 2.02e-04
5.07e-03 + 2.33e-04
3.56e-03 + 3.08e-04

1.37e-03 £ 1.73e-04
8.01e-03 =+ 1.65e-02
7.89e-04 £ 3.15e-05
1.27e-03 + 2.89e-04
8.15e-04 + 4.78e-05
8.30e-04 + 5.99e-05
1.17e-03 + 1.42e-04
3.75e-04 £+ 3.11e-05
5.80e-04 + 1.33e-04
2.42e-04 £+ 2.14e-05
3.67e-04 + 5.18e-05
2.53e-04 £ 2.52e-05
2.52e-04 + 3.28e-05
3.24e-04 £+ 1.93e-05
2.95e-04 + 2.19e-05

Configuration RE24 RE25

conf0 2.02e-03 £+ 1.31e-04  7.60e-10 £+ 1.10e-10
confl 2.34e-03 4+ 1.03e-04  4.08e-09 + 3.88e-09
conf2 1.47e-03 + 3.57e-05  9.40e-10 £ 2.70e-10
conf3 1.37e-03 + 4.08e-05 1.72e-09 4+ 1.09e-09
conf4 1.45e-03 + 6.03e-05  1.14e-09 £ 9.20e-10
conf5 1.47e-03 £+ 5.22e-05  1.26e-09 + 7.20e-10
NSGA-II default 2.35e-03 4+ 2.88e-04  7.10e-10 + 1.10e-10
conf0-x6 4.47e-04 4+ 3.65e-05 = 3.00e-10 + 2.00e-11
confl-x6 5.59e-04 + 3.04e-05 3.60e-10 £ 1.20e-10
conf2-x6 3.21e-04 4 3.22e-05  3.30e-10 + 7.00e-11
conf3-x6 2.86e-04 + 2.72e-05 4.20e-10 + 2.00e-10
conf4-x6 3.07e-04 £ 2.28e-05 3.30e-10 + 7.00e-11
conf5-x6 3.31e-04 £ 3.25e-05 3.00e-10 4 6.00e-11
NSGA-II default-x6  6.33e-04 & 3.87¢-05 | 2.90e-10 &+ 1.00e-11

conf-diverse-0-5

3.58e-04 + 2.31e-05

3.30e-10 £ 7.00e-11

Table 5.6: Continuation of average normalized hypervolume for each configuration and
ensemble when solving a specific problem. Highlighted in dark gray are the first best-
performing algorithms, while those in light gray represent the second best performers.
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CD=4.235

conf-diverse-0-5 — I NSGA-II default
conf4-x6 —
conf0-x6 — confl
conf2-x6
confl-x6 conf2
conf3-x6 conf5
conf5-x6 ——— conf4
NSGA-Il default-x6 — L—— conf0

conf3

Figure 5.12: Critical distance plot ranking the obtain configurations and ensembles from
the Quality-Diversity optimization process.

Then, an ensemble of the diverse configurations is implemented inside jMetal
by solving each problem with each configuration and then merging the fronts to
obtain a new front of non-dominated solutions. However, it would not be fair to
compare a ensemble with n-times[|the computational budget of a single configu-
ration when solving the problem. For fairness, the diverse ensemble is compared
with ensembled formed by n-times each of the configurations, including the de-
fault NSGA-II.

Tables [5.5] and [5.6] show the mean NHV with a budget of 10000 evaluations
for 10 independent executions of each configuration on the validation problems.
Ensembles have a budget of 10000 for each of their configurations.

To rank the obtained configurations, the critical distance (CD) plot is used
over the average ranking of each of the algorithms computed over the considered
problems [38]]. The chart connects with a blue line those configurations whose
difference in ranks is smaller than the critical distance. The critical distance is
a function of the number of problems and configurations under comparison, as
well as a critical value that results from the Studentized range statistic and a
specified confidence level. Figure shows the ranking of both the obtain con-

3Being n the number of unique configurations.



5.9. QUALITY-DIVERSITY: AN ALTERNATIVE APPROACH 95

p(rope) = 1.000 p(rope) = 1.000

p(conf4-x6) = 0.000 p(conf-diverse-0-5) = 0.000 p(conf4-x6) = 0.000 p(conf-diverse-0-5) = 0.000
(a) rope = 0.2 (b) rope = 0.1
p(rope) = 1.000 p(rope) = 0.445

&

p(conf4-x6) = 0.000 p(conf-diverse-0-5) = 0.000 p(conf4-x6) = 0.000 p(conf-diverse-0-5) = 0.555
(c) rope = 0.01 (d) rope = 0.001

Figure 5.13: Posterior plot of the normalized hypervolume indicator using a Bayesian
sign test for the top two performer ensembles with several different rope values.

figurations and the ensembles generated from them. The diverse ensemble is
ranked first, but it has shown to be statistically equivalent according to the criti-
cal distance computed. The equivalence is due to the relatively higher strictness
of the critical distance, particularly in benchmark problems where improvements
are typically marginal.

To further study the difference between the top 2 ranked ensembles, a Bayesian
sign test analysis [8] is provided in the Posterior plot shown in Figure The
Bayesian sign test defines a region of practical equivalence, also known as rope,
that accounts for ties between the ranking of the algorithms, while the other two
choices represent whether one of the configurations is superior to the other or
vice versa. Figure shows the analysis with different values of rope, the pa-
rameter that dictates the region of equivalence between the two configurations,
which is defined in terms of the absolute difference of the paired NHV values
between the two configurations. The probability of each of three possible out-
comes can be estimated by counting the number of data points that fall in each
of the regions. With this data and using 0.001 as the value of rope, the proba-
bility of the diverse ensemble being superior over the defined set of problems to
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the second top-performer configuration is around 55.7%, while being practically
equivalent in the rest of cases, proving that generating is never statistically worse
than even the best configuration found.

This section has introduced a novel approach for the automatic configuration
of metaheuristics by applying Quality-Diversity techniques to generate a diverse
set of high-quality algorithmic configurations for forming an ensemble. This en-
semble was evaluated on a set of benchmark problems to validate the proposed
approach. A future step will be the evaluation on real-world problems.



Chapter 6

Leveraging Large Language Models
for the Automatic Implementation
of Optimization Problems

This chapter proposes the use of large language models for the automatic imple-
mentation of multi-objective optimization problems, allowing domain experts
to implement their problems in optimization frameworks. For this, moostral, a
fine-tuned version of a large language model, is presented to solve this task and
embedded into a graphical tool to facilitate its usage and validate the provided
implementation. The graphical tool provided by moostral lowers the implemen-
tation skill required to benefit from the recommendation system and other tools
presented in this PhD thesis.

97
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6.1 Introduction

Domain experts frequently deal with multi-objective optimization problems in
real-world scenarios and metaheuristic techniques have become a popular al-
ternative to solve them [28, 32]]. One of the main reasons for the popularity
of multi-objective metaheuristics stems from the existence of software packages
like jMetal [41], PlatEMO [148] or Pymoo [|15] that include the implementation
of state-of-the-art algorithms, benchmark problems and utilities (e.g., quality
indicators). Additionally, many of these packages offer a platform to develop
custom techniques and problems that can readily benefit from all the package
components.

However, there is a burden for many domain experts who, despite their deep
understanding of the problem at hand, frequently lack the programming ex-
pertise in a specific programming language or are simply not familiar with the
requirements imposed by the software engineering principles applied in the de-
velopment of the optimization frameworks. For these users, software complexity
may hinder the exploitation of these software packages.

Large Language Models (LLMs) have recently revolutionized the field of Ar-
tificial Intelligence and become the de facto approach for tasks related to the
understanding of human language [171]. In particular, generative LLMs deal
with the task of generating outputs that resemble the used training data. For
example, a generative LLM trained with a large corpus of data can generate text
that follows the same structure and grammar rules as the training data text.
Interestingly, LLMs are not only restricted to human languages but have also
shown success in generating machine language (e.g., programming languages).
This fact has been exploited by tools such as GitHub Copilof| that support users
by providing programming suggestions, for example.

LLMs, however, pose challenges in high consumption of computation re-
sources, memory, and energy. Therefore, executing them is often beyond the
resource capabilities of single users. LLMs as a service has become a standard
mode of operation today, where users can use LLMs that run on a large pool
of resources via API calls. While this solves the resources issue, it entails a fi-
nancial cost, therefore impeding its usage for many users, and might also have
environmental consequences [[131].

In this PhD thesis, LLMs are used to bridge the gap between domain experts
and multi-objective software packages, facilitating non-technical users to imple-
ment their multi-objective optimization problems, thus lowering the barrier of

Thttps://github.com/features/copilot
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entry to benefit from their ecosystem. This chapter investigates one approach to
address this issue is by employing Mistral [80] as the LLM and jMetal [41] as the
target optimization framework. Additionally, the goal is to research this hypoth-
esis while keeping the computational resources needed within the capabilities of
single users.

The main contribution of this work is fine-tuning the smallest Mistral model
to automatically implement multi-objective optimization problems in jMetal from
a textual representation of the formulation. The model is trained by using syn-
thetic multi-objective problems as inputs and the weights after fine-tuning are
released under an open license. These synthetic problems are created by a prob-
lem generator also designed in the context of this work. Additionally, to facilitate
its usage, the model is packaged inside moostral, a tool that implements valida-
tion steps to guarantee the correctness of the implementation and features a
graphical user interface (GUI), all without requiring enterprise-level hardware.

The use of LLMs in the context of optimization with metaheuristics is gain-
ing attention. A recent survey about evolutionary computation and LLMs [162]]
shows two main areas of interest: the use of LLMs as black-box search opera-
tors, and the utilization of the representation and generation abilities of LLMs
to select or generate suitable optimization algorithms for solving specific prob-
lems. Some works related to LLM-based approaches to design metaheuristics
include [101] and [98]]. In the context of multi-objective optimization, Liu et al.
investigates in [97] the application of LLMs to design operators for the MOEA/D
multi-objective evolutionary algorithm. None of these works address the ap-
proach of using LLMs to automatically generate the implementation of multi-
objective problems.

The rest of this chapter is structured as follows: In Section the challenge
of generating a synthetic dataset of multi-objective problems is approached. Sec-
tion details the process of fine-tuning an LLM for the automatic implementa-
tion of multi-objective optimization problems and explains the validation process
utilized to guarantee the correctness of said implementation. Finally, Section (6.4}
the model is evaluated on a set of real-world problems and the natural language
definitions of problem:s.

6.2 Synthetic Problem Generation
One of the biggest challenges in machine learning is having a quality and sizable

task-specific dataset. In the context of this work, this dataset would consist of
pairs (input, output), where input is the textual description of a multi-objective
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optimization problem and output is the class implementing it. In jMetal, Problem
is a generic interface that requires the user to implement methods for gathering
the number of decision variables, objectives and constraints. It also requires
implementing methods to create a feasible solution for that problem and allow
evaluating the objective functions for a specific solution. This work focuses on
continuous optimization, and without loss of generality, all objective functions
comprising the problems are assumed to be minimized. jMetal requires that
classes implementing continuous problems extends the DoubleProblem interface
(which in turn inherits from Problem), where methods for getting upper and
lower bounds of each of the problem decision variables must be included.

Unfortunately, the number of problems currently implemented within jMetal
(or any other framework) is not large enough to train a machine learning model.
To overcome the dataset size challenge, a novel synthetic problem generator is
developed. Some approaches for automatic problem generation exist in the re-
lated work using an affine combination of existing functions [39] or the random
composition of trees from a known set of unary, binary, and vector-oriented oper-
ators operators [149]. The idea of this work is to artificially create valid pairs that
could be used for fine-tuning a pre-trained model, but unfortunately these ex-
isting proposals from the literature did not contain the textual representation of
a problem formulation nor the respective jMetal implementation. The proposed
generator provides both. It utilizes LLMs and prompt engineering techniques to
generate new multi-objective optimization problems. This methodology for gen-
erating synthetic data is valid due to the mathematical nature of optimization
problems, which allows for verifying the correctness of the generated output for
each input.

The problems created with the generator are not expected to be of interest
from the point of view of optimization, e.g., multi-objective problems having
Pareto sets with specific properties. The goal is to produce a sufficiently large
dataset of diverse and valid problems that can be used to fine-tune a pre-trained
LLM.

This generator also leverages LLMs, in particular a variant of OpenAI’'s GPT-
3 [22] labeled as GPT-3.5 Turbd? It follows a three-steps pipeline to generate
multi-objective optimization problems. To improve the quality of the results,
few-shot learning was utilized. Figure provides a visual overview of the
pipeline; a more in-depth description of each step is provided in the following.

The first step consists of a couple of functions that build a textual represen-
tation of the formulation of a multi-objective problem and the value ranges for

2https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
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Prompt [ Few-Shot ] [ Few-Shot ](—

jMetal Template

Parameters
\ 4
Problem Definitions Natural Language
Injected in Template
Injected in Prompt jMetal Code

Figure 6.1: Pipeline for the generation of a synthetic dataset of multi-objective optimiza-
tion problems.

its decision variables. This description is referred to as a prompt. To guarantee
the diversity of the problems generated, a series of parameters with randomly
chosen values are injected into the prompt. Table showcases the parameters
and possible choices for each of them.

The next step consists in generating the Java class implementing the problem
in jMetal out of the prompt. This stage poses some additional challenges: the
class must compile and allow running any algorithm included in jMetal. Initially,
the model was tasked to generate the whole code of the class. However, it was
observed that GPT-3.5 Turbo struggled when doing so and, in most cases, gener-
ated incomplete code. As the purpose of the generator was to create a dataset
including valid implementation of problems, this task was simplified by asking
the model to generate only several parameters and functions implementation
out of the prompt. These parameters and functions are later rendered into a
template for the implementation of the jMetal problem interface.

The template instantiated with the parameters and functions generated with
the model is then compiled and validated as part of the last step. The validation
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Parameter Possible values
Number of objectives [2, 5]
Number of variables [2, 7]
Function type Linear, quadratic, polynomial, rational, exponential,

logarithmic, trigonometric or hyperbolic

Table 6.1: Parameters of the prompt for the generation of a new synthetic problem. The
number of function types provided in the prompt are equal to the number of objectives.

consists of performing a battery of unit tests intended to ensure code correc-
tion. Upon the event of a failing test, that prompt and class are discarded. The
tests performed in this stage do not guarantee a flawless implementation of the
problem described in the formulation from the input; however, as this is only
a training dataset, some small errors will not affect the training of the model.
The goal is for the model to learn the problem structure and patterns within
jMetal code; a deeper validation is provided on the developed tool described in
Section [6.3.2]

SyntheticAl, the synthetic problem generator, is implemented in Python using
OpenAT’s library for communicating with the GPT-3.5 Turbo through their API.
The problem generator is provided under an open-source licensef}

6.3 Methodology

Next, the methodology followed for designing the automatic implementation
tool is described. First, the focus is directed on the selected LLM and how it was
adapted to the proposed scenario. Second, the validation process of the outputs
generated by the tool is described. The performance of the tool will be evaluated
in the next section.

6.3.1 Fine-Tuning Mistral for Automatic Problem Implemen-
tation

Once a high-quality dataset is generated, it is used to adapt an LLM to perform
better for the task of automatic multi-objective problem generation. More specif-
ically, this process consists of selecting a foundational model and fine-tuning it
with the generated dataset via self-supervised learning using LoRA. A dataset of

3Problem generator available at: https://gitlab.com/jfaldanam-phd/syntheticai
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950 synthetic problems is used for this task. The fine-tuning process relies on
the Huggin Face libraries transformers [159] for training and inference, and the
Parameter-Efficient Fine-Tuning (PEFT) [164] for the LoRA implementation.

As the foundational model, Mistral-7B-v0.1 has been selected due to its small
number of parameters (7 billion, which can be considered as small in the con-
text of the state-of-the-art LLMs), its open license (Apache 2.0 license) and its
high performance compared to other open models above its size. Mistral 7B
has been shown to outperform higher parameters models [|80] such as Llama 2
13B [|152] across all evaluated benchmarks and Llama 1 34B [151] in reasoning,
mathematics, and code generation.

The considered version of Mistral used in this paper encodes each of its pa-
rameters with two bytes (i.e., fp16). Storing the whole model into volatile mem-
ory requires around 24 GB of capacity without performing any optimization.
This resource usage is within the capacity of powerful laptop or desktop ma-
chines. Related work shows that by applying techniques such as quantization it
is possible to easily reduce the memory requirements by 2x and 4x [54]], or even
beyond [104] while retaining most of its language capabilities, and tools to per-
form quantization at the time of loading the model to do inference are available
from different sources (e.g., Nvidia TensorR"[]z_f] or the same Transformer library
used in this work).

The model weights for moostral-7B, obtained after fine-tuning, are released
under an open source license®], along with moostral, the tool described in this

WOI'I@.

6.3.2 Guaranteeing Correctness While Working With Large Lan-
guage Models

The main target of this work are domain experts who want to use an optimization
framework like jMetal but lack the expertise to code their optimization prob-
lems by themselves. The proposed tool automatizes this task by providing an
implementation out of a human description through a graphical user interface,
depicted in Figure 6.2

LLMs are probabilistic methods, and it is well known they sometimes might
generate mistakes when solving some tasks. In this scenario, it is paramount
to guarantee the correctness of the generated code to avoid any implementation

“https://developer.nvidia.com/tensorRT
>https://huggingface.co/jfaldanam/moostral-7B
®https://gitlab.com/jfaldanam-phd/moostral
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Automatic implementation of optimization
problems in jMetal

This interactive tool allows the automatic implementation of a multi-objective optimization problem into the jMetal framework

by using large language models. More information about this tool can be found at jfaldanam-phd/moostral.

Problem description in a textual representation

Insert here the textual representation of the formulation of your problem. ®

f1=5*exp(x[1]) + x[2]"2 + 3 * x[3] - 10;
f2=2* cosh(x[1]) - sinh(x[2]) * tanh(x[3]);
f3=4*x[1]73-3 *x[2]*2+2 *x[3] +5;
f4=1.2*x[1]72+4*x[2] -3 * X[3]"3- 5.5;
f5=6.5*x[1] +2 * exp(x[2]) - 1.5 * x[3]"2 - 4;

Value ranges:
x[1]in [-1,1]
x[2]in [-2,2]
x[3]in [-3, 3]
300/5000

(Optional) Verify the correctness of the implementation

Provide at least 3 variable-objective pairs to test against the generated implementation to guarantee its correctness. Delete the
example points to skip this step. An example of the format required in TSV:

Variables Objectives
varl,var2,...,varn objl,obj2,...,objm
varl,var2,...,varn objl,obj2,...,objm
=, Variable =, Objective
0.5,0.6,0.7 0.703,1.870,5.82,-3.828,2.159
1,23 16.5914,-0.5227,3.0,-77.3,3.7781
‘ Convert ‘

The problem has been generated
The generated problem has passed unit testing!
The generated problem has been validated with user provided data!

package xyz.jfaldanam;

import java.util.List;
import org.uma.jmetal.problem.doubleproblem.impl.AbstractDoubleProblem;

import org.uma.jmetal.solution.doublesolution.DoubleSolution;

public class ProblemY extends AbstractDoubleProblem {
/

Generated code cut for clarity */

Figure 6.2: Showcase of the graphical user interface for the proposed tool while gener-
ating a multi-objective optimization problem. The details of the implementation are not
shown for formatting reasons; an example of the model output is available in Listing
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error. An example of these mistakes is what has been termed hallucinations [74]],
i.e., grammatically correct outputs stating incorrect facts.

Two validation approaches are considered to guarantee the correctness of
the generated code. First, as done during the generation of synthetic problems,
the LLM output is checked for syntactic errors by compiling the resulting code,
and for basic functionality by running a set of unit tests that guarantee that the
generated code will run within the framework.

Although not mandatory, the second validation method is recommended to
verify the correctness of the generated code. To apply this method it is required
that the domain expert provides a few values for the decision variables of the
problem, as well as the expected output for these values. These validation inputs
can either be manually calculated or, in the case of real-world problems, obtained
from the results of previous physical experimentation. Figure shows the
pipeline to convert the user input into valid jMetal code.

By applying these validation steps, the correctness of the output cannot be
guaranteed but, if it fails, a notification can be shown to the user confirming
whether the generated implementation computes the same output for the pro-
vided variable values, thus giving it confidence in the implementation. This val-
idation procedure is automatically integrated into the provided graphical user
interface.

6.4 Evaluation of the Fine-Tuned Model

The quality of the proposed model is assessed with two types of experiments.
In both cases, data not used for fine-tuning the model is used for the evalua-
tion. First, the mathematical formulation of ten real-world problems is used as
inputs and the generated code is analyzed. This experiment mimics the inputs
and outputs during the fine-tuning phase. Second, the model is evaluated on
natural language-based descriptions of problems instead of their mathematical
formulation. Although the fine-tuned model has not been trained with this kind
of input, it is based on a foundational model and, therefore, still retains some
capabilities for natural language understanding. The goal is to analyze whether
these capabilities can be leveraged to generate proper jMetal code.

6.4.1 Evaluation on Real-World Problems

Here, the quality of the implementation generated by the model is validated over
a set of ten real-world problems. The selected problems are part of the real-world
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User Input
Prompt [ (Zero-Shot) ]

Problem Definition jMetal Code

_________________________________ l
S

Compile and
Unit Test

Validation V
User-Provided
Validation

Figure 6.3: Pipeline for generating a problem implementation out of a user prompt and
an optional validation step.

application (RWA) family of problems included in [167] and, which are detailed
in Table [6.2]

First, a textual representation of the formulation of each of the problems is
manually created and the fine-tuned model is used to generate an implementa-
tion for each of them. As their original jMetal implementation is also available,
this is used to generate a set of three validation points for each application.
Then, those points are used to validate the generated code through both of the
methods described in the previous section.

From the ten problems available in the test suite, the approach described in
this chapter is able to generate a class extending the jMetal Abstract Double Problem
class, which implements the Double Problem interface, with the correct imple-
mentation in nine cases. The only case where the fine-tuned model has not been
able to produce a valid implementation is for the packed bed latent heat thermal
storage problem. The main characteristic of this problem is that its description
(2227 symbols according to the Mistral tokenizer) is twice as long as the rest of
the evaluated problems. When producing the code for this case, the language
model did not place the commas at the end of each of the objectives, failing to
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Problem Discipline Source
Design of honeycomb heat sinks Structure engineering [146]
Vehicle crashworthiness design Structure engineering [92]]

Development of liquid-rocket

) .. Structure engineering [|56, 153
single element injector

Production of synthesis gas Chemical engineering [52]
Performance of packed bed . . .
latent heat thermal storage Materials engineering (53]
Ultrgh}gh-strength steel Materials engineering [163]]
milling parameters
Development of water and oil . . .
repellent fabric Materials engineering [1]
Machining of wire electrical discharge Electronics engineering [119]
Design of ultra-wideband antenna Electronics engineering [26]

Table 6.2: Categorization and sources for the problems defined in the real-world appli-
cations test-suite [[167]].

compile it. This is due to the attention mechanism used by LMs[155] failing
to remember that is writing Java code after generating a long formula. Indeed,
one of the situations where LLMs often start making errors is when processing
a very large number of symbols [[100] (either as part of the input prompt or
the generated ones), as it is common for the model to start misplacing them.
A possibility to overcome this issue would be to have a wider representation of
problems requiring larger descriptions in the training dataset.

6.4.2 Problem Implementation From Natural Language De-
scriptions

For this experiment, a paragraph defining a multi-objective problem, depicted
in Listing is provided as input to the model. The number of objectives is
not explicitly indicated, but the paragraph includes a description of all of them
in different ways. For the first and third objectives, the mathematical formulas
are provided. The second objective formula, is however not explicitly stated;
instead, it is described in the human text as:
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User input:

Implement a multi—objective optimization problem where the first
objective is the negative square root of the first variable, a

second objective that is the sum of the sine of each of the variables
minus six and a half, and a third objective that is the first variable
minus the third one. The range of feasible values for each variable is
between —7 and «.

Generated implementation:

package xyz.jfaldanam;

import java.util.List;
import org.uma.jmetal.problem.doubleproblem.impl. AbstractDoubleProblem;
import org.uma.jmetal.solution.doublesolution.DoubleSolution;

public class ProblemY extends AbstractDoubleProblem {

/%% Constructor =/

public ProblemY () {
int numberOfVariables = 3;
numberOfObjectives (3);
numberOfConstraints (0);
name ("ProblemY");

List<Double> lowerLimit = List.of(—Math.PI, —Math.PI, —Math.PI);
List <Double> upperLimit = List.of(Math.PI, Math.PI, Math.PI);

variableBounds (lowerLimit, upperLimit);

}

/% Evaluate () method =/

@Override

public DoubleSolution evaluate (DoubleSolution solution) {
double x1 = solution.variables ().get(0);
double x2 = solution.variables ().get(1);
double x3 = solution.variables (). get(2);

solution.objectives ()[0] —Math.sqrt(x1);

solution.objectives ()[1] = (Math.sin(x1) + Math.sin (x2) +
Math. sin (x3)) — 6.5;

solution. objectives ()[2]

x1 — x3;

return solution;

Listing 6.1: Generated jMetal code from the natural language description.
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“...a second objective that is the sum of the sine of each variable mi-
nus six and a half...”

The reason for doing so is to evaluate the natural language understanding of the
model. The number of decision variables is intentionally not indicated, although
their ranges of values are explicitly stated and there are mentions to the first and
third variables.

Listing contains the implementation generated by the model and it was
validated to be correct. The model provided the right code for the explicit func-
tions in the first and third objectives. Focusing on the variables, the model cor-
rectly understood that there are a total of three decision variables, even if the
second one is not explicitly mentioned. With this understanding, it correctly de-
fined the second objective and the ranges for the decision variables. This exam-
ple showcases the generalization capabilities of LLMs, but more experimentation
and representation of this kind of input representation in the fine-tuning dataset
is required to guarantee results in this format.






Chapter 7

Algorithmic Recommendations
Based on Semantic Knowledge

In this chapter, a recommendation tool for multi-objective metaheuristics, recom-
moonder, is presented. recommoonder is powered by a knowledge graph and
provides a variety of interfaces to obtain different kinds of outputs, ranging from
algorithmic recommendation to visualization methods or a generic entry point to
query the knowledge graph. This tool provides a central tool that integrates all
research and tools presented in this PhD thesis. recommoonder integrates all re-
search and software tools developed during this PhD thesis, evaluating its main
hypothesis.
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7.1 Introduction

As mentioned in Chapter (1, end-users across various disciplines such as biolo-
gists, engineers and economists often encounter challenges when attempting to
optimize multi-objective problems due to their limited expertise in metaheuris-
tics. Consequently, they frequently resort to using the default settings of popular
algorithms without customizing parameters to suit their specific real-world sce-
narios. As a result, a current and active research area involves developing tools
that enable these users to efficiently identify suitable algorithms and configura-
tions for addressing their unique problems.

Addressing this need, current research efforts are actively exploring methods
for automating the tuning of metaheuristics parameters [73} [122] and even for
the automatic design of algorithms [[13]. These endeavors aim to streamline the
process of parameter adaptation in metaheuristics, thereby enhancing their per-
formance in tackling specific problem domains. However, it is important to note
that these approaches often entail significant computational overhead. Never-
theless, researchers in this field are continuously advancing, striving to narrow
the disparity between the intricacies of real-world problems and the efficacy of
optimization techniques.

This chapter aims to validate the initial hypothesis of this PhD thesis: “Given
previous knowledge on the relationship between a specific algorithmic configu-
ration and the quality of the result of said algorithm solving a problem and given
a similitude metric between two problems, it is possible to provide recommen-
dations to non-expert users to choose an algorithmic configuration to efficiently
solve a specific problem”. To validate the hypothesis, this chapter aims to design
and develop a recommendation tool for algorithms for solving multi-objective
optimization problems by applying a knowledge-based approach based on se-
mantic web technologies.

The primary contribution of this chapter lies in the development of a recom-
mendation tool named recommoonder. This tool enables users to receive algo-
rithmic recommendations for specific problems, drawing upon previous knowl-
edge modeled after moody as outlined in Chapter (3. recommoonder undergoes
validation through two different tests. The first one tests the recommender per-
formance when looking for a problem that is available on underlying knowledge
graph, while the second evaluates the performance on unknown problems.

Following this introduction, the chapter is organized as follows. Firstly, Sec-
tion provides an review of the state of the art in algorithmic recommen-
dation. Section presents an overview of the software architecture of the
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recommender system and the provided interfaces. Finally, Section [7.4] validates
recommoonder by evaluating the recommendations over benchmark and real-
world problems and Section [7.5| discusses the results.

7.2 Literature review

[[178]] proposes a similar idea to the one described in this thesis proposing a case
of study in flow shop scheduling, but focusing on mono-objective optimization
and only algorithmic recommendation, without entering on the configuration of
said algorithm.

Tian et al. [[149] presents a recommendation system for metaheuristics based
on deep learning, focusing on selecting the best kind of metaheuristic (genetic
algorithm, ant colony optimization, etc.) based on features extracted from the
mathematical decomposition of each objective into operators such as addition,
subtraction, square, absolute value, etc. This representation of a function is then
converted into reverse polish notation and used to train a deep recurrent neural
network that predicts the best algorithm.

[93] introduces a landscape-aware automatic algorithm selection, which us-
ing a set of three multi-objective search algorithms NSGA-II [35]], IBEA [176]
and MOEAD/D [169] for a large-size of instances on a family of multimodal
pseudo-boolean optimization problems known as pmnk — landscape [156]. In a
complementary study, [[165] conducted an analysis on the same dataset which
further visualizes the relationship between landscape features and algorithm per-
formance.

[19] proposes a methodology to generate problem instances that behave
vastly different for more than two algorithms simultaneously, which supports
that finding the best configuration for a specific problem instance, as proposed
in this work, is highly relevant.

In [122], the authors discuss on the conclusions the importance of tuning
a metaheuristic to a specific problem and demonstrate how a tuned version of
MOEA/D for a single problem performs better than a generic tuned version. The
authors discuss as a future research line is researching what is the important
feature that makes two problems similar.

Transfer learning is the application of knowledge obtained on one domain
onto a different one [125} 120]. [50,, 51] demonstrates the use of transfer learn-
ing to transfer algorithm configuration obtained for some problems and instances
into new scenarios. This concept is used for the recommender presented in this
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Figure 7.1: Software architecture of recommoonder with the main public interfaces.

thesis, which uses previous knowledge about the problems and configurations to
transfer the best suitable one to a new domain, in this case a new multi-objective
problem.

[[108] discusses one possible issue that is faced by knowledge-based recom-
mendation system. Known as the “cold-start” issue, it refers to the case when
there is no previous information to base the recommendation on, for example in
case of a problem where it’s landscape is completely separated from the previ-
ously seen. In this cases, the fall back solution is to provide a default configura-
tion for said algorithm.

7.3 Architecture

The proposed tool, recommoonder, is a recommendation engine, powered by a
knowledge graph, that provides a set of interfaces to allow the ingestion, visu-
alization and export of data, a query interface for the knowledge graph and,
finally, the recommendation engine itself. Figure shows this architecture.

Each of these interfaces will be explored in more detail in the following sec-
tions.
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Figure 7.2: Ingestion pipeline for recommoonder.

7.3.1 Data ingestion

This interface provides mapping functions to convert data from different stan-
dard formats into RDF, following the semantic model provided by moody and
described in Chapter 3] recommoonder requires two types of data: an analysis of
the landscape of multi-objective optimization problems and a set of algorithmic
configurations, that solve those problems based on a series of quality indicators.

For data on landscape analysis, a connector to moorphology, described in
Chapter 4}, is provided. Through this interface new problems can be added to
the knowledge graph directly from the output of moorphology.

Chapter |5 provided in this thesis promotes the use of automatic configura-
tion of metaheuristic to generate the knowledge that will be used for recom-
mendation. There are connectors available for Evolver, the tool presented in this
thesis, and irace [103]], representing an existing mature and popular tool for
auto-configuration [37]], used in works such as [11,(12,115].

Once data is converted to RDF, a reasoner is executed over it using the SWRL
rules defined in Section to guarantee that the algorithmic configurations are
valid before inserting them into the knowledge graph.

An overview of the ingestion process is available in Figure
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7.3.2 Recommendation engine

The recommendation engine is built as a knowledge graph that integrates pre-
vious knowledge, as mentioned in the previous section, powered by semantic
web technologies. As such, a recommendation is, in essence, the response to a
specific query to the knowledge base that retrieves the required knowledge for
the user to be more informed to make a decision. The knowledge graph is stored
as a RDF graph which can be queried using the SPARQL query language.

The recommendation process is outlined in Figure To explain this pro-
cess, let us consider a scenario where a user aims to tackle a continuous multi-
objective problem without prior knowledge of its characteristics or suitable algo-
rithms to solve it.

Initially, the user employs moorphology to derive a set of landscape char-
acteristics that describe the problem. With this characterization, the user then
consults recommoonder to identify the optimal configuration for addressing prob-
lems with similar characteristics. Upon finding a suitable configuration, the user
can export that configuration as a jMetal execution command that will solve the
target problem efficiently.

In cases where no suitable configuration is identified (or if it falls below a
confidence threshold), the user may resort to a more computationally intensive
approach, such as utilizing Evolver to auto-configure an algorithm to solve his
target problem. Afterwards, the user can submit its results to recommoonder to
enhance the knowledge graph and improve future recommendations.

7.3.3 Ancillary interfaces

In addition to the main functionalities, recommoonder provides ancillary inter-
faces to facilitate different kinds of analysis on the knowledge graph.

Firstly, a SPARQL endpoint is provided, offering direct access to the knowl-
edge graph, which allows users to explore the stored graph by employing the
SPARQL query language, enabling them to extract specific information tailored
to their needs. This endpoint allows the user to input any valid SPARQL query.
However, users can also find some sample SPARQL queries in Appendix B, which
can be used as-is or modified according to their needs

Secondly, a visualization engine is incorporated, equipped with common graphs
for data within the knowledge graph. These visualizations include but are not
limited to: the similarity of problems or the correlation between algorithmic
configurations and the performance in a specific problems. These visual aids en-
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hance the understanding of the data, making it more accessible and interpretable
for users analyzing it.

Finally, recommoonder offers an interface for exporting the knowledge graph,
or part of it, in various standard formats such as comma-separated values (CSV)
or JavaScript Object Notation (JSON). While exporting in these formats may
result in the loss of some information present in the RDF representation of the
knowledge graph, it proves invaluable for users and researchers seeking to apply
artificial intelligence or other analytical techniques to the data. Additionally, the
system provides an export option tailored specifically for jMetal, providing users
with the precise commands required to execute a specific configuration of an
algorithm, facilitating the application of knowledge derived from recommoonder
in real-world scenarios.

7.4 Evaluation

To assess the effectiveness of the recommendations provided by the recommender,
two distinct scenarios are proposed for evaluation.



118 CHAPTER 7. KNOWLEDGE-BASED ALGORITHMIC RECOMMENDATION

Problem Distance

DTLZ1 2D 2.175
DTLZ1 3D 5.573
DTLZ3 2D 6.115
ZDT6 6.487
DTLZ5 2D 6.654

Table 7.1: Top 5 Problems with more similarity to the anonymized problem (DTLZ1 2D.

7.4.1 Evaluation on known problems

Firstly, the recommender’s capability to identify optimal configurations for known
problems is examined. In this scenario, a problem is selected from the knowl-
edge graph, and its characteristics are anonymized through the computation of
a new sampling, so that there is no exact match with the stored sampling. Sub-
sequently, the recommender is tasked with suggesting the best configuration to
address this anonymized problem. The expectation is that the recommender will
identify the most effective solution known for the chosen problem. In Figure|7.4]
the distances between all problems are depicted. Most problems exhibit a few
close neighbors, while the majority of its neighbors display similarity distances
closer to the average.

For this evaluation, the DTLZ1 problem with two objectives has been selected,
and a new random sampling is generated and characterized through by using
moorphology. With this characterization and using as reference the hypervol-
ume quality indicator, the recommendation system is tasked on finding the best
solution for a problem with similar characteristics.

In Table the anonymized problem is most similar with itself by a signif-
icant difference, showcasing high confidence on the configurations that will be
provided by the recommendation system, followed by the 3 objective variant of
the same problem. Following a greedy approach, the best configuration to solve
the most similar problem is selected. Figure showcases the front obtained
from both the default NSGA-II configuration and the recommended configura-
tion on 10000 evaluations.

7.4.2 Evaluation on unknown problems

In the next step, the recommender’s performance is evaluated when presented
with some real-world problems unfamiliar to the recommendation system. The
recommendation system is provided with a sampling of an unknown problem
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and seek a solution through identifying similarities with other known problems.
By comparing the obtained configuration with a default NSGA-II configuration,
the effectiveness of the recommendation is assessed for solving the unfamiliar
problem. It’s essential to acknowledge the possibility of not finding an optimal
configuration due to insufficient information in the knowledge graph, commonly
referred to as the “cold-start issue” [[108].

For this evaluation, three examples of the real-world application (RWA) fam-
ily [[167]] will be used. The RWA problems are chosen because of their real-world
nature, and their family of problems is not part of the knowledge graph. The
selected problems for this evaluation are the design a single element injector
of liquid-rocket engine problem (Goel2007) [56]], the crashworthiness design of
vehicles problem (Liao2008) [[92] and the optimization of milling parameters for
ultrahigh-strength steel problem (Xu2020) [|163].

After sampling the Goel2007 problem, the most similar problems can be seen
in Table[7.2] being RE37 [[147,[153]] the closest. Upon further inspection into the
RE37 problem, it is actually a different formulation of the design of the injector
of a liquid-rocket engine. This variant is also included on the RWA family under
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Figure 7.5: Evaluation of the recommended configuration versus the default NSGA-II
configuration for solving the DTLZ1 problem in 10000 evaluations.

the name of Vaidyanathan2004. A closer inspection on the characteristics of both
problems showcases their similarity mainly in the variable space as the difference
between them is in the number of objectives.

On Figure the populations of the default NSGA-II and the recommended
algorithm after 10000 evaluations for solving Goel2007. The recommended con-
figuration has converged more in the limited evaluation budget and achieves
better diversity.

Problem Distance Problem Distance Problem Distance
RE37 2.177 RE34 2.954 RE35 9.7141
WFG4 8.656 RE21 5.965 RE37 9.811
RE33 8.862 GLT6 5.993 WFG4 10.012
GLT5 8.880 LZ09F6 6.371 RE21 10.469
RE21 9.045 DTLZ6 2D 6.469 GLT5 10.666

(a) Goel2007 (b) Liao2008 (c) Xu2020

Table 7.2: Top 5 Problems with more similarity to each real-world problem.
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Figure 7.6: Reference front of Goel2007 (top), front obtained by NSGA-II with standard
setting (bottom left), and front obtained by recommoonder (bottom right).

Focusing on Liao2008, the closest problem found after the sampling is the
RE34, as seen in Table Reviewing the sources of both problems [[167, 147,
47|, they are actually the same problem, solving the crashworthiness design of
vehicles [92].

In the case of Liao2008, there is a big difference between the Pareto fronts
obtained by the default and recommended configurations on a budget of 10000
evaluations, as shown in Figure As commented previously, Liao2008 was
actually a problem already available inside the knowledge graph as RE34. As
the knowledge graph was populated using a auto-configuration approach, it is
expected of this configuration to have a high performance on their respective
problems.

After analyzing the most similar problems to Xu2020, there is no single close
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Figure 7.7: Reference front of Liao2008 (top), front obtained by NSGA-II with standard
setting (bottom left), and front obtained by recommoonder (bottom right).

problem that is significantly more similar than the rest. This lack of a relationship
with the studied problems means that is possible that a good configuration can
not be found for Xu2020. Following a greedy approach, the RE35 is selected as
it is the closest problem, as shown in Table While Xu2020 optimizes the
milling parameters for ultrahigh-strength steel, the RE35 [147,47] is also a real-
world problem that optimizes the design of a speed reducer, a simple gear-box
that can be used in a light airplanes.

Figure shows the Pareto fronts obtained by the default NSGA-II configu-
ration and the recommendation provided by recommoonder. In this case there
is a less noticeable difference between both fronts, probably cause by the low
similarity to the closest problem.
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7.5 Discussion

After this experimentation, a lot of overlap has been found between the existing
families of real-world problems presented as benchmarks for multi-objective op-
timization. Three of the ten problems of the RWA family proposed by Zapotecas-
Martinez et al. (2023) [[167] are also found in a previous study by Tanabe and
Ishibuchi (2020) [[147]. The RWA paper claims:

“In this regard, some investigators have summed up some real-world
applications coming from different research lines. (Tanabe and Ishibuchi,
2020) reported a set of real-world problems taken from different dis-
ciplines to evaluate the performance of multi-objective algorithms.
(...) This work presents a completely distinct set of multi-objective
optimization problems with real-world constraints and some bench-
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mark results.”

However, this chapter found empirically, and later confirmed by reviewing
the sources of each problem, that Liao2008 and Vaidyanathan2004 are the same
problem previously presented as RE34 and RE37, respectively. Another of the
problems, Goel2007, is also a variant of RE37.

Additionally, there seems that real-world problems are often more similar
with other real-world problems that to benchmark problems, as seen in Table
Benchmark problems are often designed to be easily configurable, scalable on
the number of variables, or objectives, or extremely hard. While those are useful
features for benchmarking algorithms, this kind of problems are not similar to
real-world problems.

In real world scenarios, there’s often a recurring necessity to solve numerous
instances of the same optimization problem. For instance, consider a engineering
company addressing the optimization of the milling parameters for ultrahigh-
strength steel, while testing with different steel variants that modify some of the
parameters of the objective functions.

The same approach presented on this chapter could be used by creating a
custom knowledge graph containing the solved instances of the optimization of
the milling parameters problem that the company are solving daily. Once they
have generated a knowledge base, the conventional generic similarity measure
between problems can be replaced with a domain-specific distance metric, which
better captures similarities among problem instances. This enables the develop-
ment of custom recommender system to meet specific requirements on domain
specific optimization problems.



Chapter 8

Conclusions and Future Work

This chapter presents the conclusions and prospective future work derived from
this dissertation. It summarizes the main findings and highlights their relevance
in each of the related fields. Based on the findings and limitations identified, the
focus then shifts to potential areas for future research.
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8.1 Conclusions

To conclude this PhD thesis, some conclusions are provided on each of the areas
that have been discussed.

8.1.1 Semantic modeling in the multi-objective optimization
domain

This PhD thesis proposes an ontology-based framework for standardization in
multi-objective optimization, focusing on evolutionary algorithms. moody, the
main ontology guiding the framework, covers aspects from the formalization of
evolutionary algorithms and their parameters and multi-objective problems with
their landscape characteristics.

moody is developed in OWL 2 and is linked to external ontologies like BIGOWL,
OPTION and DMOP. A reference implementation to ingest configurations of evo-
lutionary algorithms is provided, converting the output of the auto-configuration
tool irace to the standard format RDF.

Four use cases have been provided to validate the framework. These use
cases are the enhancement of auto-configuration tools via the moody framework,
data integration from auto-configuration tools or other sources, querying of the
knowledge graph to obtaining valuable insights and exporting this knowledge
into optimization frameworks used in real world applications, like pagmo [14]]
from the European Space Agency.

To provide landscape characteristics of multi-objective problems to the pro-
posed knowledge graph, an implementation of these metrics is provided as the
software project moorphology. To validate the selected set of metrics, an evalua-
tion of the stability of the characteristics over the COCO bi-objective suite is pro-
vided, accompanied of an implementation of the suite in jMetal. Additionally, a
study to evaluate the quality of the set of features to characterize multi-objective
optimization problems is provided.

8.1.2 Auto-configuration of metaheuristics

A study is presented in which the NSGA-II algorithm is used as a meta-optimizer,
i.e., as a tool that, given a set of problems as training set, is aimed at finding
the best configurations from a set of NSGA-II parameters and components. Uti-
lizing a simple encoding scheme and leveraging features existing in jMetal, the
proposal is entirely developed within jMetal, thus eliminating the need for any
external tools.
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Several experiments have been defined to validate this proposal considering
two scenarios and three experiments to cover both automatic search of NSGA-
IT designs for single and multi-problem training sets. The outcomes of these
experiments reveal that the meta-optimizer is able of finding configurations of
NSGA-II that successfully achieve the defined goals.

After validating the approach, Evolver is presented as a software package
aimed at the meta-optimization of multi-objective metaheuristics. By defining
the automatic search of configurations for multi-objective optimizers as a multi-
objective problem, Evolver facilitates the user to find algorithm variants that are
tailored to a number of optimization problems used as training set. This tool
offers a number of representative multi-objective metaheuristics which are highly
configurable (NSGA-II, MOEA/D, SMS-EMOA, MOPSO).

Evolver is implemented in Java and it is based on the jMetal framework, so a
large amount of existing metaheuristics can be used as meta-optimizers. Users
familiarized with jMetal will be comfortable with Evolver and have the opportu-
nity to use it a tool for research in the line of automatic metaheuristic tuning. The
provided GUI allows non-expert users to easily set and run a meta-optimization
execution.

How Evolver works is illustrated by considering an example representing a
typical scenario in which an engineer intends to find a variant of NSGA-II to
solve a given kind of problems.

Additionally, a novel alternative approach is proposed by applying Quality-
Diversity for automatic configuration of metaheuristics. The application of this
optimization techniques provides a set of diverse algorithmic configuration that
are ensembled to improve the robustness and generalization of the individual
configurations and is evaluated over a large set of benchmark problems.

8.1.3 Automatic implementation of multi-objective optimiza-
tion problems

The challenge of bridging the natural language or textual representation of the
formulation of multi-objective optimization problems into executable code is ad-
dressed, designing a tool that automatizes the implementation process.

The key contributions lies in the fine-tuning of an LLM over a synthetic
dataset of multi-objective problems generated by a custom problem generator
provided alongside the model. The proposed model effectively translates the
textual representation of the formulation of a optimization problem into their
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equivalent implementation in the jMetal framework, and the model is empiri-
cally validated using a suite of ten real-world multi-objective problems.

Additionally, the trained model is embedded within a tool with a graphical
user interface and a set of validation steps to guarantee the correctness of the
provided implementation without requiring the high-end computational power
often associated with LLMs. Both the model weights and the tool are released
under an open license.

8.1.4 Automatic recommendation of multi-objective optimiza-
tion algorithms

The final contribution is the development of a tool named recommoonder. This
tool integrates the capabilities of the previous software packages into a recom-
mendation engine in a user-friendly package. It is designed to assist non-expert
users in selecting algorithm configurations that surpass standard default settings.

The tool is then evaluated on both known and unknown problems and con-
firms empirically how the similarity measurements that are found in Chapter
are relevant to the recommendation of specific algorithmic configurations.

8.2 Future Work

This sections enumerates potential lines of work to continue the research pre-
sented in this PhD thesis. The source code for all the tools presented in this
PhD thesis is open source under a permissive license for anyone interested in
continuing any of the presented research lines.

* The moody ontology can be extended by including other metaheuristics,
such as particle swarm optimization, and new problems, including discrete
optimization problems. In this sense, working with real world problems
is particularly interesting, but proposes an special challenge as usually the
Pareto front is unknown.

* An in-depth analysis on whether the set of landscape characteristics pre-
sented in this thesis is the optimal set of landscape characteristics, how
they affect algorithmic performance and a quantitative analysis on how
they relate to problem similitude are open research lines.

* The proposed metric for calculating the similarity between multi-objective
optimization problems, which currently relies on measuring the distance
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between their landscape characteristics, can be enhanced through the in-
tegration of machine learning techniques. These techniques could be em-
ployed to dynamically assign varying weights to each characteristic, de-
pending, for example, of the algorithm used.

Another interesting line involves a deeper study into the similarity between
the problems of a single family, what characteristics are affecting that sim-
ilarity and the biases introduced by the authors.

On the topic of auto-configuration, a study that examines the extent to
which the number of evaluations of the meta-optimizer can be reduced
in the search while the resulting NSGA-II designs are still able solve the
problems efficiently. A related study is finding to which extent the com-
putational budget for the configurations being evaluated can be reduced
while still obtaining good configurations. This latter option is specially
interesting on computationally expensive problems.

Adapt Evolver to support optimization on problems with an unknown Pareto
front. This involves the use of quality metrics for the meta-optimization
approach that doesn’t required a reference front, such as the hypervolume,
and dynamically adjusting the reference front during the search process.
This second option involves using a external archive of solutions that will
be re-evaluated when updating the reference.

On the automatic implementation of multi-objective optimization prob-
lems, the training of LLMs to generate output for other optimization frame-
works like PlatEMO or Pymoo is an open research line. This extension in
PlatEMO would open up the tool to a greater number of users. Other re-
search lines to improve the efficiency of the model are the quantization
of the model or the pre-training with custom tokenizers designed to rec-
ognize framework specific symbols. This latter would allow reducing the
number of tokens required to generate valid code, improving both latency
and inference cost.

A different approach to improving the proposed LLM is the study on the
use of semantic technologies to inject domain knowledge into the model,
intending to generate problem implementations from informal natural lan-
guage descriptions or closer to the language used by humans.

Continuing the research on the use of quality-diversity optimization with
a study on the application of diverse ensemble on real-world problems is
also an open research line.






Appendix A

Design Spaces of Metaheuristics

This appendix offers a comprehensive description of the design spaces of the
configurable multi-objective metaheuristics implemented in Evolver, namely the
NSGA-II (Non-dominated Sorting Genetic Algorithm II), the SMS-EMOA (S-Metric
Selection Evolutionary Multi-Objective Algorithm), the MOEA/D (Multi-Objective
Evolutionary Algorithm based on Decomposition) and the MOPSO (Multi-Objective
Particle Swarm Optimization) algorithm. Table includes the component and
parameters of the NSGA-II algorithm. The parameters and components of the
SMS-EMOA algorithm are available in Table Table shows the compo-
nents and parameters available for the configurable implementation of MOEA/D.
A highlight of this implementation is the variation parameter, allowing the meta-
optimizer to find configurations of both the original MOEA/D [169] and the im-
plementation with differential evolution (MOEA/D-DE) [89]. Table shows
the components and parameters for a configurable implementation of MOPSO,
representing a different set of metaheuristics.
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Parameter/Component Type Domain Dependency
algorithmResult c {externalArchive, population}
populationSizeWithArchive i [10, 200] algorithmResult == externalArchive
externalArchive c {crowdingDistanceArchive, unbounded} algorithmResult == externalArchive
offspringPopulationSize i [1, 400]
selection [ {tournament, random}
selectionTournamentSize i [2, 10] selection == tournament
createlnitialSolutions c {random, latinHypercubeSampling, scatterSearch}
crossover c {SBX, BLX ALPHA, wholeArithmetic}
crossoverProbability r [0.0, 1.0]
crossoverRepairStrategy [ {random, round, bounds}
sbxDistributionIndex r [5.0, 400.0] crossover == SBX
blxAlphaCrossoverAlphaValue r [0.0, 1.0] crossover == BLX ALPHA
mutation c {uniform, polynomial, linkedPolynomial, nonUniform}
mutationProbabilityFactor r [0.0, 2.0]
mutationRepairStrategy c {random, round, bounds}
polynomialMutationDistributionIndex r [5.0, 400.0] mutation € {polynomial, linkedPolynomial}
uniformMutationPerturbation r [0.0, 1.0] mutation == uniform
nonUniformMutationPerturbation r [0.0, 1.0] mutation == nonUniform

Table A.1: Design space of the configurable NSGA-II algorithm in Evolver.
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Parameter/Component Type Domain Dependencies
neighborhoodSize i [10, 200]
maximumNumberOfReplacedSolutions i [1, 5]
aggregationFunction c {tschebyscheff, weightedSum, PBI, modifiedTschebyscheff}
normalizeObjectives [¢ {TRUE, FALSE}
epsilonParameterForNormalizing r {1.0e-8, 25.0} normalizeObjectives == TRUE
pbiTheta r {1.0, 200.0} aggregationFunction == PBI
algorithmResult c {population, externalArchive}
externalArchive c {crowdingDistance, unbounded} algorithmResult == externalArchive
createlnitialSolutions c {random, latinHypercubeSampling, scatterSearch}
selection c {populationAndNeighborhoodMatingPoolSelection}
neighborhoodSelectionProbability r [0.0, 1.0]
variation c {crossoverAndMutation, differentialEvolution}
mutation c {uniform, polynomial, linkedPolynomial, nonUniform}
mutationProbabilityFactor r [0.0, 2.0]
mutationRepairStrategy c {random, round, bounds}
polynomialMutationDistributionIndex r [5.0, 400.0] mutation € {polynomial, linkedPolynomial}
uniformMutationPerturbation T [0.0, 1.0] mutation == uniform
nonUniformMutationPerturbation r [0.0, 1.0] mutation == nonUniform
crossover [¢ {SBX, BLX ALPHA, wholeArithmetic} variation == crossoverAndMutation
crossoverProbability r [0.0, 1.0]
crossoverRepairStrategy c {random, round, bounds}
sbxDistributionIndex r [5.0, 400.0] crossover == SBX
blxAlphaCrossoverAlphaValue r [0.0, 1.0] crossover == BLX ALPHA
CR r [0.0, 1.0] variation == differentialEvolution
F r [0.0, 1.0] variation == differentialEvolution

Table A.3: Design space of the configurable MOEA/D algorithm in Evolver. Types: (c)ategorical, (i)nteger, (r)eal. (PBI;

penaltyBoundarylntersection)
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Appendix B

Sample SPARQL Queries

This appendix provides all the example queries for the moody framework, mainly
described in Section Listing includes the SPARQL query defined to ob-
tain the parameter configuration from a specific experiment, with the results
shown in Table Which algorithmic configuration is most effective in solving
a specific problem, based on a particular quality indicator, can be retrieved by us-
ing Listing with example outputs in Table A derived query to check for
the best performing algorithm for problems with similar characteristics can be
seen in Listing with results on Table for problems with a disconnected
front. Listing demonstrate how to query for configurations that are compati-
ble with pagmo. From Section Listing showcases the implementation of
similarity metric (Listing between multi-objective problems based on their
landscape characteristics.
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PREFIX moody: <https://w3id.org/moody#>

SELECT DISTINCT ?parameter ?value

WHERE {
VALUES ?experiment { moody:Experiment NSGAII_DTLZ1_GECCO19 }
?experiment moody: parameterValue ?parameter_value
?parameter_value moody:valueOfParameter ?parameter
?parameter_value ?property ?value
?property rdfs:subPropertyOf moody: parameterValueProperty

}

Listing B.1: SPARQL Query Q1, extraction the parameters of one specific experiment.
moody:Experiment NSGAII DTLZ1_GECCO19 is an example of the URI of an Experi-

ment.
Result:

?parameter ?value
moody:Parameter AlgorithmResult externalArchive
moody:Parameter_BlxAlphaCrossoverAlphaValue 0.5906
moody:Parameter_CreatelnitialSolutions latinHypercubeSampling
moody:Parameter_CrossoverProbability 0.9874
moody:Parameter_CrossoverRepairStrategy bounds
moody:Parameter_Crossover BLX ALPHA
moody:Parameter ExternalArchive crowdingDistanceArchive
moody:Parameter MaximumNumberOfEvaluations 25000
moody:Parameter_MutationProbability 0.0015
moody:Parameter MutationRepairStrategy random
moody:Parameter Mutation polynomial
moody:Parameter OffspringPopulationSize 200
moody:Parameter PolynomialMutationDistributionIndex = 158.05
moody:Parameter PopulationSizeWithArchive 20
moody:Parameter PopulationSize 100
moody:Parameter ProblemName dtlz.DTLZ1
moody:Parameter ReferenceFrontFileName DTLZ1.csv
moody:Parameter_SelectionTournamentSize 9
moody:Parameter_Selection tournament

moody:Parameter_Variation

crossoverAndMutationVariation

Table B.1: Results for SPARQL Query Q1, extraction the parameters of one specific ex-

periment.
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PREFIX moody: <https://w3id.org/moody#>
SELECT DISTINCT
?experiment (AVG(?exp_value) as ?value)
WHERE {
VALUES ?problem { moody:Problem ZDT2 } .
VALUES ?indicator {
moody: QualityIndicator HyperVolume
.
?problem_resolution rdf:type
moody: ProblemResolution .
?problem_resolution moody: partOfExperiment
?experiment .
?experiment moody: problemSolved ?problem .
?problem_resolution moody:indicatorValue
?indicatorValue
?indicatorValue moody: valueOfIndicator
?indicator .
?indicatorValue moody: hyperVolumeValue
?exp_value .
b
GROUP BY (?experiment)
ORDER BY ASC(?value)
LIMIT 5

Listing B.2: SPARQL Query Q2, recover the experiments that better resolve a problem
according to a specific quality indicator. moody:Problem_ZDT?2 is the URI of a Problem

and moody:QualityIndicator_HyperVolume is the URI of a Quality Indicator.

Result:
?experiment ?value
moody:Experiment 2246 3.28790E-1
moody:Experiment 2235 3.28792E-1
moody:Experiment 2241 3.28801E-1
moody:Experiment 1935 3.28809E-1
moody:Experiment 2266 3.28814E-1

Table B.2: Results for SPARQL Query Q2, recover the experiments that better resolve a

problem according to a specific quality indicator.
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PREFIX moody: <https://w3id. org/moody#>

PREFIX bigowl: <http://www.khaos.uma.es/lod/bigowl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT

?experiment
(SAMPLE (? problem) as ?problem)
(MIN(? exp_value) as ?value)

WHERE {

}

VALUES ?geometry { "disconnected"™ "xsd:string } .

VALUES ?indicator { moody:Qualitylndicator_ HyperVolume } .
?problem_resolution rdf:type moody: ProblemResolution .
?problem resolution moody: partOfExperiment ?experiment .
?experiment moody: problemSolved ?problem .

?problem rdf:type bigowl:Problem .

?probem moody: geometry ?geometry .

?problem_resolution moody:indicatorValue ?indicatorValue
?indicatorValue moody:valueOfIndicator ?indicator
?indicatorValue moody:hyperVolumeValue ?exp_value .

GROUP BY (?experiment)
ORDER BY ASC(?value)
LIMIT 5

Listing B.3: SPARQL Query Q3, extraction the parameters of one specific experiment.
moody:Experiment_ NSGAII_00001 is an example of the URI of an Experiment.

Result:

?experiment ?problem ?value

moody:Experiment 3049 moody:Problem ZDT4 6.58993E-1
moody:Experiment 1731 moody:Problem ZDT4 6.59747E-1
moody:Experiment 3338 moody:Problem ZDT4 6.60115E-1
moody:Experiment 3541 moody:Problem ZDT4 6.60986E-1
moody:Experiment 3171 moody:Problem ZDT4 6.61028E-1

Table B.3: Results of SPARQL Query Q3, extraction the parameters of one specific exper-
iment.
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PREFIX moody: <https://w3id.org/moody#>

PREFIX bigowl: <http://www.khaos.uma.es/lod/bigowl#>

SELECT DISTINCT ?problem resolution ?experiment ?problem ?currentEvaluations ?hv_double
WHERE {

b

VALUES ?algorithm { moody:Algorithm NSGAII }
VALUES ?problem { moody:Problem ZDT4 }
?problem_resolution rdf:type moody: ProblemResolution
?problem_resolution moody: partOfExperiment ?experiment
?experiment moody: problemSolved ?problem
?experiment moody: algorithmUsed ?algorithm
?problem resolution moody:currentNumberOfEvaluations ?currentEvaluations
?problem_resolution moody:indicatorValue ?hvValue
?hvValue moody:valueOfIndicator moody: QualityIndicator HyperVolume
?hvValue moody:hyperVolumeValue ?hv_double
?experiment moody: parameterValue ?parameter_value AR
?parameter_value AR moody: valueOfParameter moody: Parameter AlgorithmResult
?parameter_value AR moody: algorithmResultValue ?value AR
FILTER ( ?value AR = "population" )
?experiment moody: parameterValue ?parameter_value OPS
?parameter_value OPS moody: valueOfParameter moody:Parameter OffspringPopulationSize
?parameter_value OPS moody: offspringPopulationSizeValue ?value_OPS
FILTER ( ?value_OPS = 100)
?experiment moody:parameterValue ?parameter value_S
?parameter_value_S moody:valueOfParameter moody: Parameter_Selection
?parameter_value_S moody:selectionValue ?value_S
FILTER ( ?value S = "tournament" )
?experiment moody:parameterValue ?parameter_value STS
?parameter_value STS moody:valueOfParameter moody: Parameter SelectionTournamentSize
?parameter_value_STS moody: selectionTournamentSizeValue ?value STS
FILTER ( ?value STS = 2 )
?experiment moody: parameterValue ?parameter_value_C
?parameter_value C moody:valueOfParameter moody: Parameter Crossover
?parameter_value_C moody: crossoverValue ?value_ C
FILTER ( ?value C = "SBX" )
?experiment moody: parameterValue ?parameter value SCDI
?parameter_value_SCDI moody:valueOfParameter moody:Parameter_SbxCrossoverDistributionIndex
?parameter_value SCDI moody: sbxCrossoverDistributionIndexValue ?value SCDI
FILTER ( abs(?value SCDI — 20.0) < 2.0)
?experiment moody: parameterValue ?parameter_value_M
?parameter_value M moody:valueOfParameter moody: Parameter Mutation
?parameter_value M moody: mutationValue ?value M
FILTER ( ?value M = "polynomial" )
?experiment moody: parameterValue ?parameter_value MP
?parameter_value_  MP moody: valueOfParameter moody: Parameter MutationProbability
?parameter_value_MP moody: mutationProbabilityValue ?value MP
FILTER ( abs(?value MP — 0.1) < 0.01)
?experiment moody: parameterValue ?parameter_value PMDI
?parameter_value_PMDI moody: valueOfParameter
moody: Parameter PolynomialMutationDistributionIndex
?parameter_value PMDI moody: polynomialMutationDistributionIndexValue ?value PMDI
FILTER ( abs(?value PMDI — 20.0) < 2.0)

ORDER BY ASC(?experiment)

Listing B.4: SPARQL Query Q4, search for algorithmic configurations that are compatible
with pagmo.
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BIND (

ABS(1 — IF(?distanceXAverage2 < ?distanceXAverage,
?distanceXAverage2/?distanceXAverage,
?distanceXAverage/?distanceXAverage2)) +

ABS(1 — IF(?distanceFAverage2 < ?distanceFAverage,
?distanceFAverage2/?distanceFAverage ,
?distanceFAverage/?distanceFAverage2)) +

ABS(1 — IF (?distanceXMaximum2 < ?distanceXMaximum ,
?distanceXMaximum2/? distanceXMaximum ,

?distanceXMaximum/? distanceXMaximum2)) +

ABS(1 — IF (?distanceFMaximum2 < ?distanceFMaximum,
?distanceFMaximum?2/? distanceFMaximum ,

?distanceFMaximum/? distanceFMaximum2)) +

ABS(1 — IF (?distanceXNonDomedMaximum2 < ?distanceXNonDomedMaximum ,
?distanceXNonDomedMaximum2 /? distanceXNonDomedMaximum ,
?distanceXNonDomedMaximum/? distanceXNonDomedMaximum2)) +

ABS(1 — IF(?distanceXNonDomedAverage2 < ?distanceXNonDomedAverage,
?distanceXNonDomedAverage2/? distanceXNonDomedAverage ,
?distanceXNonDomedAverage/? distanceXNonDomedAverage2)) +

ABS(1 — IF (?neighbourDistanceXMaximum2 < ?neighbourDistanceXMaximum ,
?neighbourDistanceXMaximum2/? neighbourDistanceXMaximum ,
?neighbourDistanceXMaximum/? neighbourDistanceXMaximum2)) +

ABS(1 — IF(?neighbourDistanceXAverage2 < ?neighbourDistanceXAverage,
?neighbourDistanceXAverage2/?neighbourDistanceXAverage ,
?neighbourDistanceXAverage/?neighbourDistanceXAverage2)) +

ABS(1 — IF(?neighbourDistanceFMaximum2 < ?neighbourDistanceFMaximum
?neighbourDistanceFMaximum2/? neighbourDistanceFMaximum ,
?neighbourDistanceFMaximum/? neighbourDistanceFMaximum2)) +

ABS(1 — IF(?neighbourDistanceFAverage2 < ?neighbourDistanceFAverage,
?neighbourDistanceFAverage2/?neighbourDistanceFAverage ,
?neighbourDistanceFAverage/?neighbourDistanceFAverage2)) +

ABS(1 — IF(?averagePropOfDomingNeigh2 < ?averagePropOfDomingNeigh,
?averagePropOfDomingNeigh2/?averagePropOfDomingNeigh
?averagePropOfDomingNeigh/?averagePropOfDomingNeigh2)) +

ABS(1 — IF(?averagePropOfDomedNeigh2 < ?averagePropOfDomedNeigh,
?averagePropOfDomedNeigh2/?averagePropOfDomedNeigh,
?averagePropOfDomedNeigh/?averagePropOfDomedNeigh2)) +

ABS(1 — IF(?averagePropOfIincNeigh2 < ?averagePropOfIncNeigh,
?averagePropOfIncNeigh2/?averagePropOfIncNeigh,
?averagePropOfincNeigh/?averagePropOfincNeigh2)) +

ABS(1 — IF (?averagePropOfLocNonDomedNeigh2 < ?averagePropOfLocNonDomedNeigh,
?averagePropOfLocNonDomedNeigh2/? averagePropOfLocNonDomedNeigh ,
?averagePropOfLocNonDomedNeigh/?averagePropOfLocNonDomedNeigh2)) +

ABS(1 — IF (?averagePropOfSupLocNonDomedNeigh2 < ?averagePropOfSupLocNonDomedNeigh,
?averagePropOfSupLocNonDomedNeigh2/? averagePropOfSupLocNonDomedNeigh,
?averagePropOfSupLocNonDomedNeigh/? averagePropOfSupLocNonDomedNeigh2)) +

ABS(1 — IF(?neighCorOfAverageDistanceX2 < ?neighCorOfAverageDistanceX,
?neighCorOfAverageDistanceX2/?neighCorOfAverageDistanceX,
?neighCorOfAverageDistanceX/?neighCorOfAverageDistanceX2)) +

ABS(1 — IF(?neighCorOfAverageDistanceF2 < ?neighCorOfAverageDistanceF,
?neighCorOfAverageDistanceF2/?neighCorOfAverageDistanceF ,
?neighCorOfAverageDistanceF/?neighCorOfAverageDistanceF2)) +

ABS(1 — IF (?proportionOfNonDomed2 < ?proportionOfNonDomed,
?proportionOfNonDomed2/? proportionOfNonDomed ,
?proportionOfNonDomed/? proportionOfNonDomed2)) +

ABS(1 — IF(?rankAverage2 < ?rankAverage,

?rankAverage2/?rankAverage,
?rankAverage/?rankAverage2)) +

ABS(1 — IF (?rankMaximum2 < ?rankMaximum,
?rankMaximum2/? rankMaximum
?rankMaximum/?rankMaximum2)) +

ABS(1 — IF (?rankEntropy2 < ?rankEntropy,
?rankEntropy2/?rankEntropy,
?rankEntropy/?rankEntropy2))

as ?distance)

Listing B.5: SPARQL implementation of the similarity metric between multi-objective
problems based on their landscape characteristics defined in Equation
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PREFIX moody: <https://w3id.org/moody#>

PREFIX bigowl: <https://w3id.org/BIGOWLProblems/>
SELECT DISTINCT ?problem ?problem2 ?distance
WHERE {

}

?problem rdf:type bigowl:Problem

?problem moody:numberOfObjectives ?numberOfObjectives

?problem moody: distanceXAverage ?distanceXAverage

?problem moody: distanceFAverage ?distanceFAverage

?problem moody:distanceXMaximum ?distanceXMaximum

?problem moody:distanceFMaximum ?distanceFMaximum

?problem moody:distanceXNonDominatedMaximum ?distanceXNonDomedMaximum .

?problem moody:distanceXNonDominatedAverage ?distanceXNonDomedAverage

?problem moody:neighbourDistanceXMaximum ?neighbourDistanceXMaximum

?problem moody:neighbourDistanceXAverage ?neighbourDistanceXAverage

?problem moody:neighbourDistanceFMaximum ?neighbourDistanceFMaximum

?problem moody:neighbourDistanceFAverage ?neighbourDistanceFAverage

?problem moody: averageProportionOfDominatingNeighbours ?averagePropOfDomingNeigh

?problem moody: averageProportionOfDominatedNeighbours ?averagePropOfDomedNeigh

?problem moody: averageProportionOfIncomparableNeighbours ?averagePropOfIncNeigh

?problem moody: averageProportionOfLocallyNonDominatedNeighbours
?averagePropOfLocNonDomedNeigh

?problem moody: averageProportionOfSuportedLocallyNonDominatedNeighbours
?averagePropOfSupLocNonDomedNeigh

?problem moody: neighboursCorrelationOfAverageDistanceX ?neighCorOfAverageDistanceX

?problem moody:neighboursCorrelationOfAverageDistanceF ?neighCorOfAverageDistanceF

?problem moody: proportionOfNonDominated ?proportionOfNonDomed

?problem moody:rankAverage ?rankAverage .

?problem moody:rankMaximum ?rankMaximum .

?problem moody:rankEntropy ?rankEntropy

?problem2 rdf:type bigowl:Problem

?problem2 moody: numberOfObjectives ?numberOfObjectives2

?problem2 moody: distanceXAverage ?distanceXAverage2

?problem2 moody: distanceFAverage ?distanceFAverage2

?problem2 moody:distanceXMaximum ?distanceXMaximum2

?problem2 moody: distanceFMaximum ?distanceFMaximum2

?problem2 moody:distanceXNonDominatedMaximum ?distanceXNonDomedMaximum?2

?problem2 moody:distanceXNonDominatedAverage ?distanceXNonDomedAverage2

?problem2 moody:neighbourDistanceXMaximum ?neighbourDistanceXMaximum?2

?problem2 moody: neighbourDistanceXAverage ?neighbourDistanceXAverage2

?problem2 moody:neighbourDistanceFMaximum ?neighbourDistanceFMaximum?2

?problem2 moody: neighbourDistanceFAverage ?neighbourDistanceFAverage2

?problem2 moody: averageProportionOfDominatingNeighbours
?averagePropOfDomingNeigh2

?problem2 moody: averageProportionOfDominatedNeighbours ?averagePropOfDomedNeigh2

?problem2 moody: averageProportionOfIncomparableNeighbours ?averagePropOfIncNeigh2

?problem2 moody: averageProportionOfLocallyNonDominatedNeighbours
?averagePropOfLocNonDomedNeigh2

?problem2 moody: averageProportionOfSuportedLocallyNonDominatedNeighbours
?averagePropOfSupLocNonDomedNeigh2

?problem2 moody: neighboursCorrelationOfAverageDistanceX
?neighCorOfAverageDistanceX2

?problem2 moody: neighboursCorrelationOfAverageDistanceF
?neighCorOfAverageDistanceF2

?problem2 moody: proportionOfNonDominated ?proportionOfNonDomed2

?problem2 moody:rankAverage ?rankAverage2

?problem2 moody:rankMaximum ?rankMaximum2

?problem2 moody:rankEntropy ?rankEntropy2

FILTER (?distance != "NaN" "xsd:double)

# Insert the BIND statement from Listing
BIND (... as ?distance)

ORDER BY ASC(?distance)

Listing B.6: SPARQL Query Q5, implementation of the proposed similitude metric based
on landscape characteristics. Requires inserting the BIND statement from Listing
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