

Automated Recommendation of Multi-Objective Optimization Algorithms Using a Knowledge-Based Approach

Doctoral thesis

José Francisco Aldana Martín

Tutor and Supervisor:
Antonio Jesús Nebro Urbaneja
Supervisor:
María del Mar Roldán García

September, 2024

Outline

1. Introduction

- a. Context and motivation
- b. Objectives
- c. Theoretical foundations

2. PhD contributions

- a. A Semantic Approach to Standardizing Multi-Objective Optimization
- b. Similarity Between Multi-Objective Problems Via Landscape Analysis
- c. Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- d. Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- e. Algorithmic Recommendations Based on Semantic Knowledge

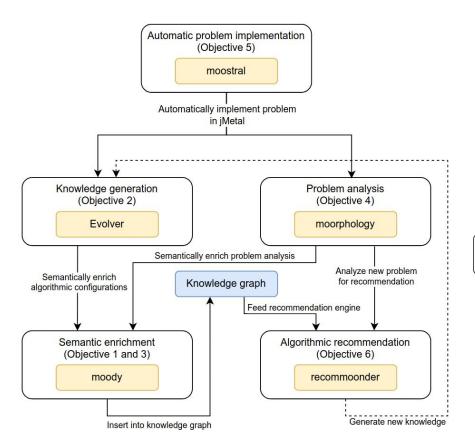
3. Conclusions and future work

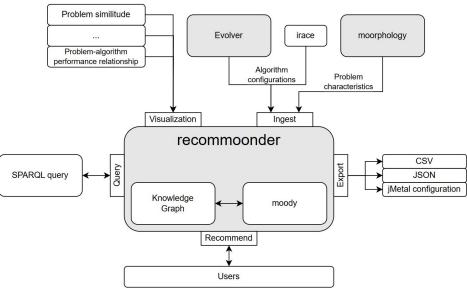
- a. Conclusions
- b. Future work

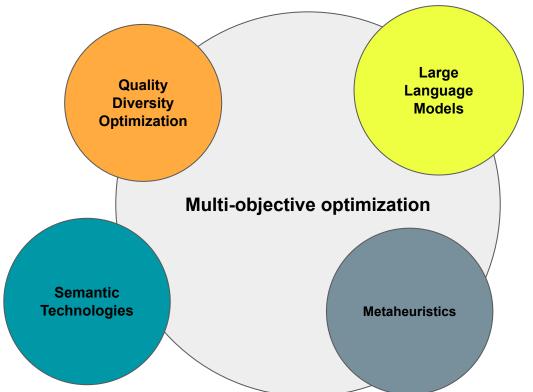
1) Introduction

- a. Context and motivation
- b. Objectives
- c. Theoretical foundations

1.a) Introduction: Context and motivation

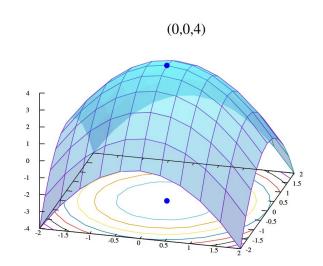

- Multi-objective optimization problems are found in a many different domains
 - Engineering, biology, medicine, economy, ...
- However, domain expert that encounter this problem do not often have the expertise in optimization to choose the best algorithm/configuration and resort to default configurations
 - Default NSGA-II from the year 2000
- The automatic configuration of metaheuristics is an active line of research
 - However, is a computationally intensive process that may not be suitable for domain experts
- This PhD proposes an alternative approach based on the use of existing knowledge to provide end-users recommendations to solve their problems.

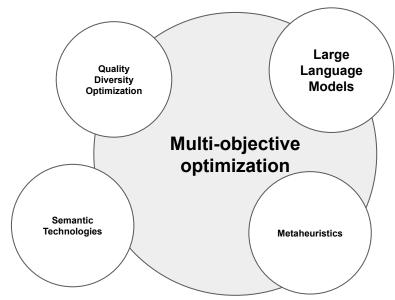

1.a) Introduction: Context and motivation


The main hypothesis of this PhD is that:

"Given previous knowledge on the relationship between a specific algorithmic configuration and the quality of the result of said algorithm solving a problem and given a similitude metric between two problems, it is possible to provide recommendations to non-expert users to choose an algorithmic configuration to efficiently solve a specific problem."

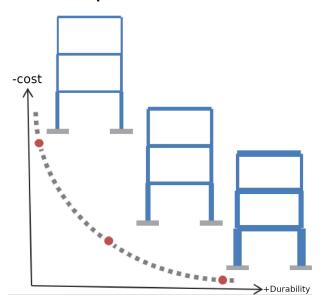
1.b) Introduction: Objectives

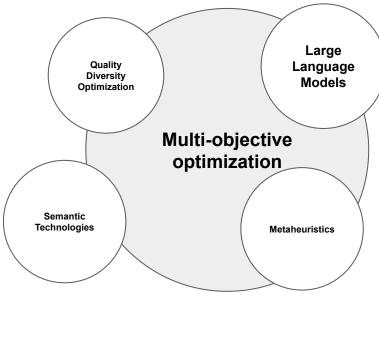




Optimization problem

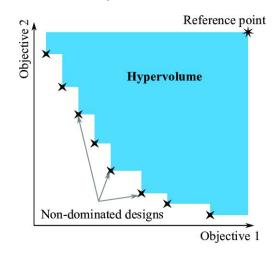
- Definition
- Multi-objective optimization problem
- Quality Indicator

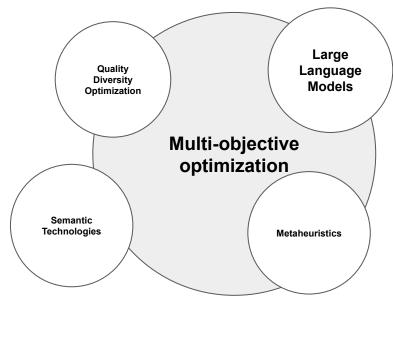




Optimization problem

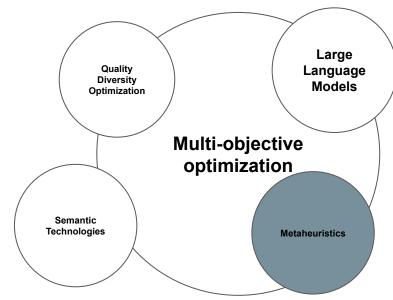
- Definition
- Multi-objective optimization problem


- Quality Indicator



Optimization problem

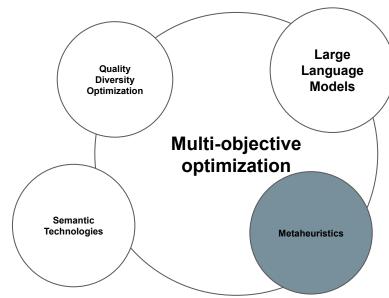
- Definition
- Multi-objective optimization problem
- Quality Indicator



P. -D. Pfister, C. Tang and Y. Fang, "A Multi-Objective Finite-Element Method Optimization That Reduces Computation Resources Through Subdomain Model Assistance, for Surface-Mounted Permanent-Magnet Machines Used in Motion Systems," in IEEE Access, vol. 11, pp. 8609-8621, 2023, https://doi.org/10.1109/ACCESS.2023.3239214

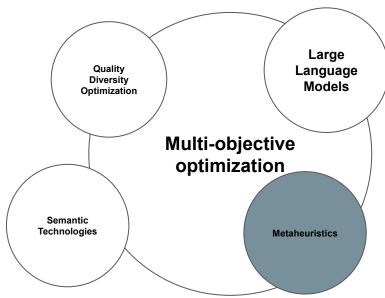
Metaheuristics

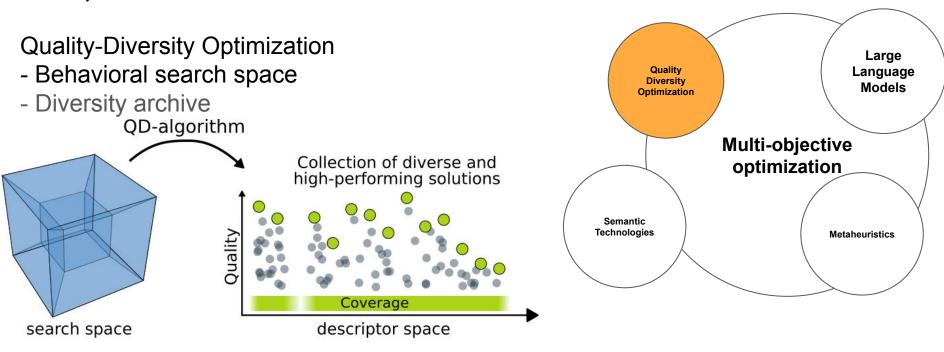
- Definition
- Evolutionary algorithm
- Optimization framework


A metaheuristic can be defined as a high level strategy to guide a set of underlying heuristics by combining different concepts for the exploration and exploitation of the search space in order to find a balance between diversification and intensification

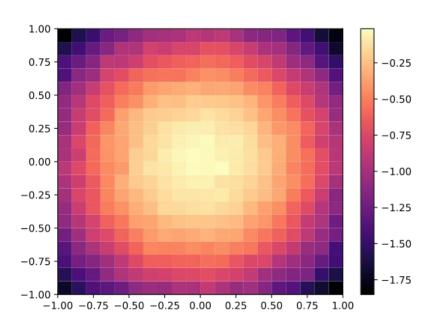
Metaheuristics

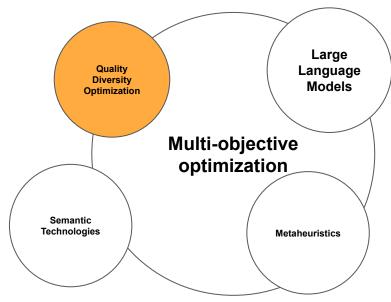
- Definition
- Evolutionary algorithm
- Optimization framework


```
P(0) \leftarrow 	ext{GenerateInitialPopulation}() t \leftarrow 0 Evaluation (P(0)) while not TerminationCriterionIsMet() do P'(t) \leftarrow 	ext{Selection}(P(t)) Q(t) \leftarrow 	ext{Variation}(P'(t)) Evaluation (Q(t)) P(t+1) \leftarrow 	ext{Replacement}(P(t), Q(t)) t \leftarrow t+1 end while
```



Metaheuristics

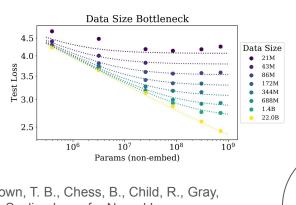
- Definition
- Evolutionary algorithm
- Optimization framework

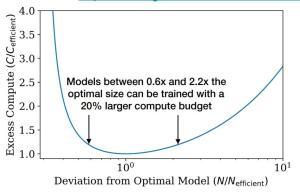

Previously encountered solution (not stored)
 Solution contained in the collection



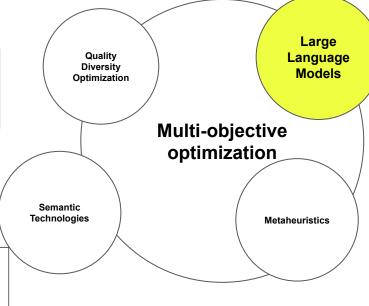
A. Cully and Y. Demiris, "Quality and Diversity Optimization: A Unifying Modular Framework," in IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 245-259, April 2018, https://doi.org/10.1109/TEVC.2017.2704781

Quality-Diversity Optimization

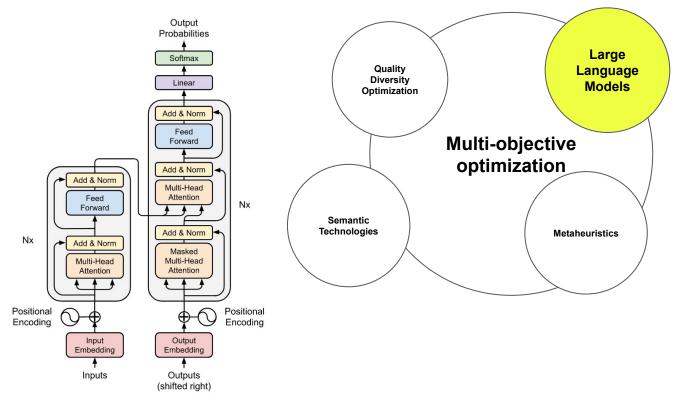

- Behavioral search space
- Diversity archive



Large Language Model

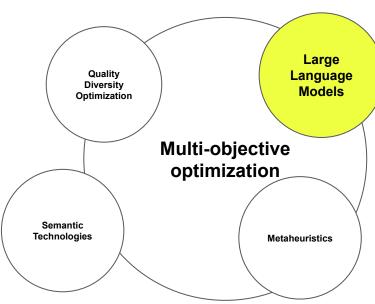

- Scaling laws
- Neural architecture
- Pre-training
- Adaptation

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., & Amodei, D. (2020). Scaling Laws for Neural Language Models. https://doi.org/10.48550/arXiv.2001.08361



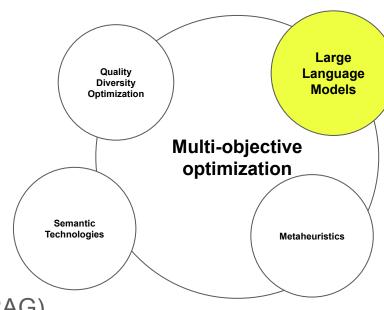
Large Language Model

- Scaling laws
- Neural architecture
- Pre-training
- Adaptation


Large Language Model

- Scaling laws
- Neural architecture
- Pre-training
- Adaptation

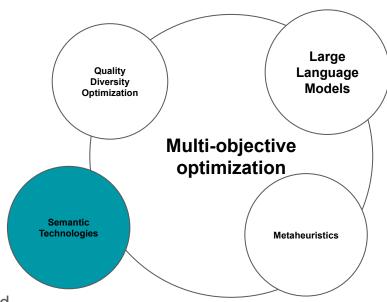
ANTHROP\C


Large Language Model

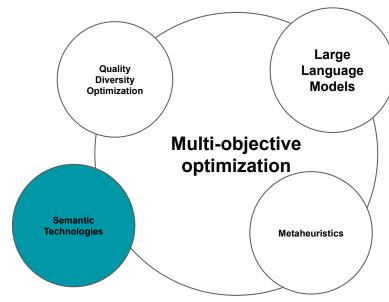
- Scaling laws
- Neural architecture
- Pre-training
- Adaptation

Impact/
Cost/
Complexity

Fine-tuning
Retrieval Augmented Generation (RAG)


Prompt engineering
One- and few- shot learning

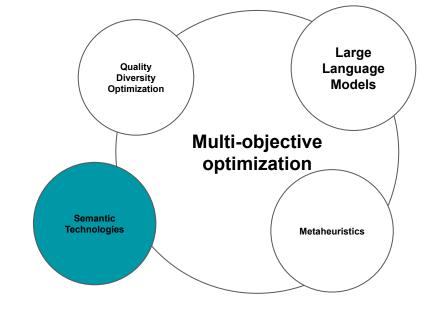
Semantic Technologies

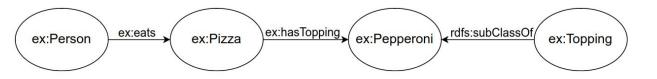

- Ontology (OWL)
- RDF
- SPARQL
- Semantic Reasoning (SWRL)
- Knowledge Graph

Ontology: Formal, logic-based approach for defining concepts and establishing common vocabulary.

Semantic Technologies - Ontology (OWL) - RDF

- SPARQL
- Semantic Reasoning (SWRL)
- Knowledge Graph

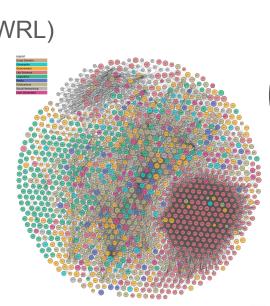

Semantic Technologies

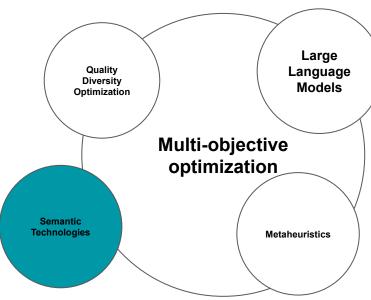

- Ontology (OWL)
- RDF
- SPARQL
- Semantic Reasoning (SWRL)
- Knowledge Graph

ex: Pepperoni (? topping)

^ ex:hasTopping(?x, ?topping)

 \rightarrow ex:Pizza(?x)




Semantic Technologies

- Ontology (OWL)
- RDF
- SPARQL
- Semantic Reasoning (SWRL)

- Knowledge Graph

The linked Open Data Cloud from https://lod-cloud.net/

2) PhD contributions

- A Semantic Approach to Standardizing Multi-Objective Optimization
- Similarity Between Multi-Objective Problems Via Landscape Analysis
- Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- Leveraging Large Language Models for the Automatic Implementation of **Optimization Problems**
- Algorithmic Recommendations Based on Semantic Knowledge

MOODY: An ontology-driven framework for standardizing multi-objective evolutionary algorithms

José F. Aldana-Martín*, María del Mar Roldán-García, Antonio J. Nebro, José F. Aldana-Montes

Software tool moody multi-objective optimization ontology

2.a) Motivation

- Lack of Standardization: No unified approach for designing multi-objective optimization algorithms.
 - Researchers often create their own components, leading to inconsistencies.
 - Difficult to compare results due to the absence of a unified framework.
- Computational Demands: Auto-configuration requires significant computational resources, knowledge should be re-used.
 - Thousands of configurations need to be generated and evaluated.
 - Identifying existing configurations for similar problems can save time but methods are unclear.

2.a) Contributions

Ontology Development - moody:

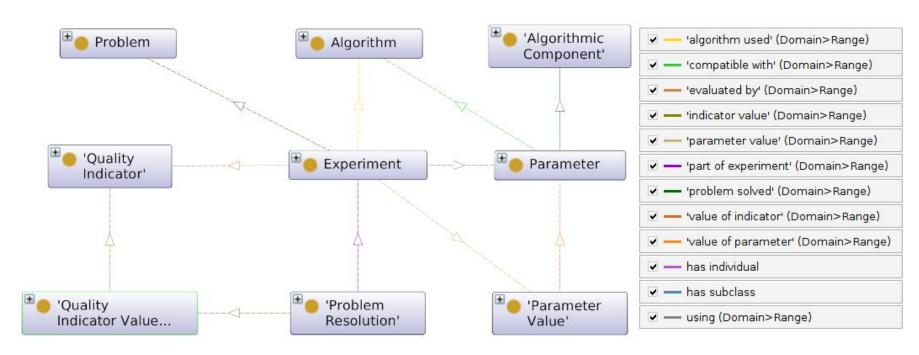
- Formalizes aspects of multi-objective evolutionary algorithms and their parameters.
- Integrates configurations into a knowledge graph for cross-compatibility.
- Follows the FAIR principles. Available at permanent URL: https://w3id.org/moody
- Enables advanced reasoning and recommendations for superior algorithm configurations.

Knowledge Graph Creation:

- Populated with algorithm configurations and optimization experiments.
- Annotated semantically and formatted in RDF.

Validated by 4 use cases

- Enhancing auto-configuration tools
- Integration of algorithmic configuration from diverse sources
- SPARQL queries to extract valuable insight
- Re-using of knowledge between different configuration frameworks

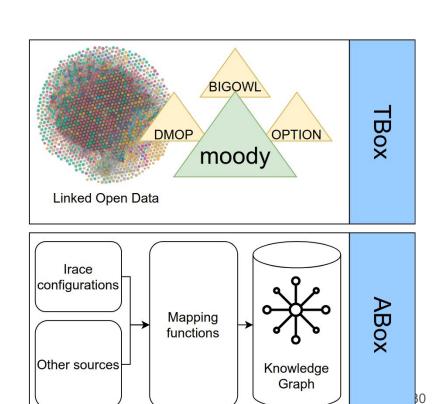

2.a) Semantic approach

Implementation:

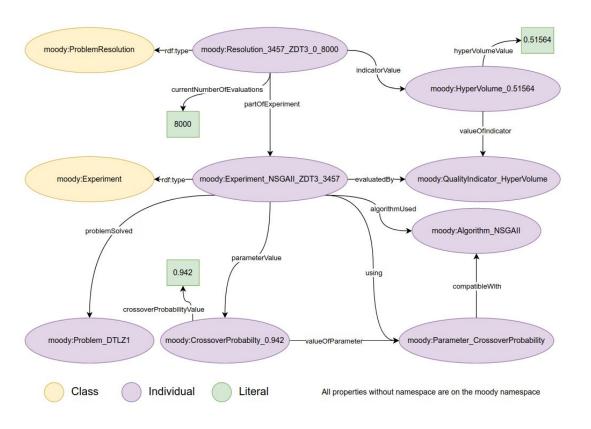
- moody is implemented as an OWL 2 ontology.
- Following the Ontology Development 101 methodology in 7 steps:
 - 1. Determine the domain and scope of the ontology.
 - 2. Consider reusing existing ontologies.
 - 3. Enumerate important terms in the ontology.
 - 4. Define classes and the class hierarchy.
 - 5. Define the properties of classes and slots.
 - Define the facets of the slots.
 - 7. Create instances.

2.a) Semantic approach

Main concepts


2.a) Domain and ranges of properties

Parameter	range
Aggregative function	{"PenaltyBoundaryIntersection", "Tschebycheff", "WeightedSum"}
Algorithm result	{"externalArchive", "population"}
BLX alpha crossover alpha value	$xsd:double[>= "0.0"^^xsd:double, <= "1.0"^^xsd:double]$
Create initial solutions	{"latinHypercubeSampling", "random", "scatterSearch"}
Crossover probability	$xsd:double[>= "0.0"^^xsd:double, <= "1.0"^^xsd:double]$
Crossover repair strategy	{"bounds", "random", "round"}
Crossover	{"BLX_ALPHA", "SBX"}
Maximum number of evaluations	xsd:integer
Maximum number of replaced solutions	xsd:integer
Mutation probability	$xsd:double[>= "0.0"^^xsd:double, <= "1.0"^^xsd:double]$
Mutation repair strategy	{"bounds", "random", "round"}
Mutation	{"polynomial", "uniform"}
Neighborhood selection probability	$xsd:double[>= "0.0"^^xsd:double, <= "1.0"^^xsd:double]$
Neighborhood size	xsd:integer
Offspring population size	xsd:integer
Polynomial mutation distribution index	$xsd:double[>= "5.0"^^xsd:double, <= "400.0"^^xsd:double]$
Population size	xsd:integer
Population size with archive	xsd:integer
SBX crossover distribution index	$xsd:double[>= "5.0"^^xsd:double, <= "400.0"^^xsd:double]$
Selection tournament size	xsd:integer[>=2, <=10]
Selection	{"random", "tournament"}
Uniform mutation perturbation	$xsd:double[>= "0.0"^^xsd:double, <= "1.0"^^xsd:double]$


2.a) Mapping to RDF

Data from different sources are integrated using mapping functions:

Possible sources are optimization frameworks and auto-configuration tools.

2.a) Mapping to RDF

2.a) Use cases

Automatic validation of configurations via semantic reasoning

```
moody: Experiment (?x)
^ moody: SbxCrossoverDistributionIndex(?p)
^ moody: sbxCrossoverDistributionIndexValue (?pv, ?cv)
^ moody: parameterValue(?x, ?pv)
^ moody: valueOfParameter(?pv, ?p)
^ moody: Crossover (?p2)
^ moody: crossoverValue (?pv2, ?cv2)
^ moody: parameterValue(?x, ?pv2)
^ moody: valueOfParameter(?pv2, ?p2)
^ swrlb:equal(?cv2, "BLX ALPHA")
-> moody: InvalidExperiment (?x)
```

2.a) Use cases

Automatic validation of configurations via semantic reasoning

```
moody: Experiment(?x)
^ moody: SbxCrossoverDistributionIndex(?p)
^ moody: sbxCrossoverDistributionIndexValue(?pv, ?cv)
^ moody: parameterValue(?x, ?pv)
^ moody: valueOfParameter(?pv, ?p)
^ moody: Crossover(?p2)
^ moody: crossoverValue(?pv2, ?cv2)
^ moody: parameterValue(?x, ?pv2)
^ moody: valueOfParameter(?pv2, ?p2)
^ swrlb: equal(?cv2, "BLX_ALPHA")
-> moody: InvalidExperiment(?x)
```

2.a) Use cases

Re-using of knowledge between different configuration frameworks

Use configurations found in jMetal for algorithms implemented in pagmo

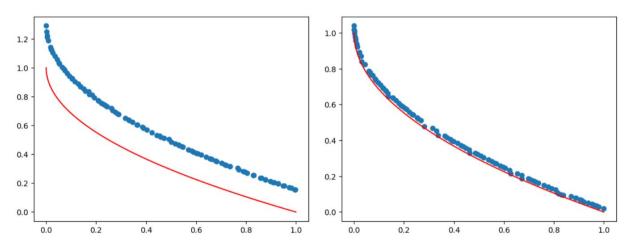
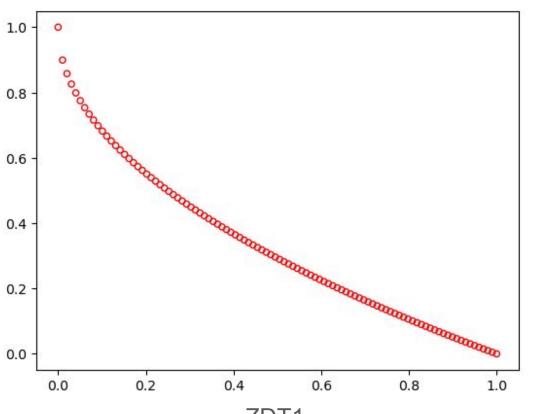


Figure 3.5: In red, reference front for the ZDT problem. In blue, Front for the ZDT4 problem obtained by NSGA-II with standard settings (left), and front obtained by exporting a configuration from *moody* (right). The target framework is pagmo.

2) PhD contributions

- a. A Semantic Approach to Standardizing Multi-Objective Optimization
- b. Similarity Between Multi-Objective Problems Via Landscape Analysis
- c. Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- d. Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- e. Algorithmic Recommendations Based on Semantic Knowledge

Software tool


moorphology -

Characterization of continuous multi-objective problems by their landscape

2.b) Motivation

- To validate this PhD hypothesis, a metric that describe how similar two continuous multi-objective problems are without the need of any domain expertise.
- Landscape analysis is the field that studies the topological and structural characteristics of optimization problems.

2.b) Landscape of optimization problems

Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele; Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol Comput 2000; 8 (2): 173–195. https://doi.org/10.1162/106365600568202

2.b) Landscape of optimization problems

Challenging test problems for multi- and many-objective optimization,
Swarm and Evolutionary Computation,
Volume 81, 2023,
https://doi.org/10.1016/j.swevo.2023.101350

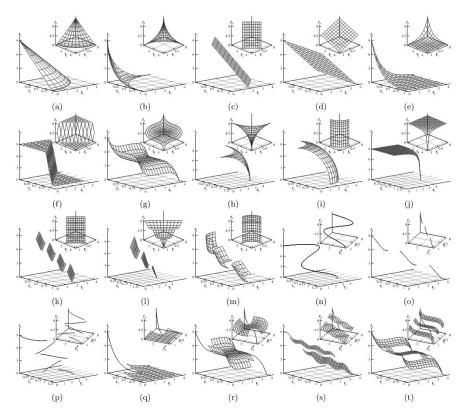


Fig. 2. Pareto fronts of ZCAT test problems using M=3 for: (a) ZCAT1, (b) ZCAT2, (c) ZCAT3, (d) ZCAT4, (e) ZCAT5, (f) ZCAT6, (g) ZCAT7, (h) ZCAT8, (i) ZCAT9, (j) ZCAT10, (k) ZCAT11, (l) ZCAT12, (m) ZCAT13, (n) ZCAT14, (o) ZCAT15, (p) ZCAT16, (q) ZCAT17, (r) ZCAT18, (s) ZCAT19, and (t) ZCAT20.

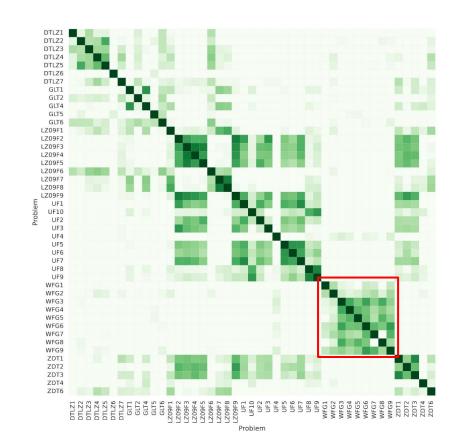
2.b) Contributions

- moorphology Software package for landscape analysis in continuous multi-objective optimization problems
- Design of a similarity metric between multi-objective problems based on landscape analysis.
- Evaluation of the tool over known benchmark problems.

2.b) Landscape characteristics

Characterize both the variable and objective search spaces.

Туре	Name	Description
Problem-		
dependent	name	Name of the problem being sampled
	n var	Number of variables
	n_obj	Number of objectives
	n cons	Number of constraints
	sample_size	Number of samples used to extract the landscape characteristics
Global		
	dist_x_avg	Average distance among solutions in the variable space
	dist_x_max	Maximum distance among solutions in the variable space
	dist_f_avg	Average distance among solutions in the objective space
	dist_f_max	Maximum distance among solutions in the objective space
	nd_n	Proportion of non-dominated solutions
	dist_x_nd_avg	Average distance among non-dominated solutions in the variable space
	dist_x_nd_max	Maximum distance among non-dominated solutions in the variable space
	rank_avg	Average rank w.r.t. non-dominated sorting
	rank_max	Maximum rank w.r.t. non-dominated sorting
	rank_ent	Entropy of the number of solutions per rank w.r.t. non-dominated sorting
Evolvability		
	sup_avg_neig	Average proportion of dominating neighbours
	inf_avg_neig	Average proportion of dominated neighbours
	inc_avg_neig	Average proportion of incomparable neighbours
	<pre>lnd_avg_neig</pre>	Average proportion of locally non-dominated neighbours
	lsupp_avg_neig	Average proportion of supported locally non-dominated neighbours
	dist_x_avg_neig	Average distance from neighbours in the variable space
	dist_x_max_neig	Maximum distance from neighbours in the variable space
	dist_f_avg_neig	Average distance from neighbours in the objective space
	dist_f_max_neig	Maximum distance from neighbours in the objective space
Ruggedness	SE S	THE RESERVE OF THE PROPERTY OF
	dist_x_cor_neig	Neighbour's correlation of the average distance from neigh. in the variable space
	dist_f_cor_neig	Neighbour's correlation of the average distance from neigh. in the objective spa


2.b) Landscape characteristics

Analyzed:

- 26 characteristics
- for 45 problems
- across 6 families

Results:

- Found clusters inside some families
- Verified similarities between families due to authors re-using functions

2) PhD contributions

- a. A Semantic Approach to Standardizing Multi-Objective Optimization
- b. Similarity Between Multi-Objective Problems Via Landscape Analysis
- c. Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- d. Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- e. Algorithmic Recommendations Based on Semantic Knowledge

A Study About Meta-Optimizing the NSGA-II Multi-Objective Evolutionary Algorithm

José F. Aldana-Martín², Antonio J. Nebro^{1,2}, Juan J. Durillo³, and María del Mar Roldán García¹,²

- Departamento de Lenguajes y Ciencias de la Computación. University of Málaga, 29071 Málaga, Spain ² ITIS Software, University of Málaga, 29071, Málaga, Spain jfaldanam@uma.es, ajnebro@uma.es, mrgarcia@uma.es
- ³ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Germany durillo@rz.de

Evolver - Meta-optimizing multi-objective

Software tool

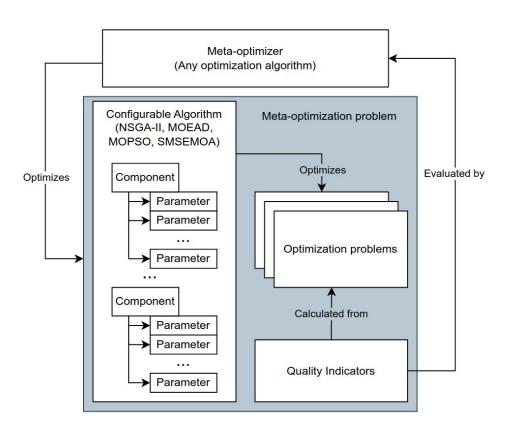
metaheuristics

José F. Aldana-Martín ^{a,b,*}, Juan J. Durillo ^c, Antonio J. Nebro ^{a,b}

^a ITIS Software, Edificio de Investigación Ada Byron, University of Málaga, Málaga, 29071, Spain

^b Dept. de Lenguajes y Ciencias de la Computación, University of Málaga, Málaga, 29071, Spain ^c Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching bei Muenchen, Germ

In 9th International Conference on Metaheuristics and Nature Inspired Computing (META 2023).


2.c) Motivation

- To populate the knowledge graph that will power the recommendation system, an automatic way to generate good configurations is required.
- To fill the knowledge graph, state-of-the-art algorithms for the auto-configuration of algorithms were explored, like irace
 - This tools were usually very slow to generate a large number of configurations. So we develop a novel meta-optimization approach.

2.c) Contributions

- A study is conducted about the use of NSGA-II to find configurations of NSGA-II, i.e., using NSGA-II as a meta-optimizer.
 - The basic idea is to consider the auto-design of NSGA-II as a multi-objective problem, where the decision variables represent parameters and components and the objectives can be combinations of quality indicators
- A auto-configuration framework tool, named Evolver, implemented within the jMetal framework

2.c) Meta-optimization approach

2.c) Experimental study

Experimentally, we were able to replicate the results of a previous study with the state-of-the-art method irace + jMetal

	NSGAII	SMPSO	AutoNSGAII
WFG1	$4.35e - 01_{1.8e-01}$	$1.17e - 01_{8.0e-03}$	$6.34e - 01_{1.8e-05}$
WFG2	$5.61e - 01_{2.3e-03}$	$5.61e - 01_{1.6e-03}$	$5.64e - 01_{9.2e-05}$
WFG3	$4.92e - 01_{8.3e-04}$	$4.92e - 01_{6.1e-04}$	$4.95e - 01_{6.1e-05}$
WFG4	$2.17e - 01_{3.7e-04}$	$2.03e - 01_{2.4e-03}$	$2.18e - 01_{1.5e-03}$
WFG5	$1.95e - 01_{3.5e-04}$	$1.96e - 01_{7.8e-05}$	$1.96e - 01_{9.8e-05}$
WFG6	$2.01e - 01_{1.3e-02}$	$2.09e - 01_{5.0e-04}$	$2.02e - 01_{1.4e-02}$
WFG7	$2.09e - 01_{5.5e-04}$	$2.09e - 01_{2.7e-04}$	$2.11e - 01_{3.5e-05}$
WFG8	$1.47e - 01_{2.7e-03}$	$1.47e - 01_{3.4e-03}$	$1.40e - 01_{3.1e-03}$
WFG9	$2.37e - 01_{1.8e-03}$	$2.35e - 01_{5.8e-04}$	$2.39e - 01_{2.0e-03}$
DTLZ1	$4.88e - 01_{7.9e-03}$	$4.94e - 01_{2.7e-04}$	$0.00e + 00_{4.9e-01}$
DTLZ2	$2.09e - 01_{4.7e-04}$	$2.10e - 01_{1.6e-04}$	$2.11e - 01_{3.6e-05}$
DTLZ3	$0.00e + 00_{1.8e-02}$	$2.10e - 01_{1.2e-01}$	$0.00e + 00_{0.0e+00}$
DTLZ4	$2.09e - 01_{2.1e-01}$	$2.10e - 01_{8.7e-05}$	$2.11e - 01_{7.2e-05}$
DTLZ5	$2.11e - 01_{3.4e-04}$	$2.12e - 01_{2.2e-04}$	$2.12e - 01_{4.5e-05}$
DTLZ6	$1.82e - 01_{3.6e-02}$	$2.12e - 01_{8.1e-05}$	$2.12e - 01_{4.2e-05}$
DTLZ7	$3.34e - 01_{3.0e-04}$	$3.35e - 01_{1.2e-04}$	$3.35e - 01_{9.2e-05}$

(a) Current study results using as objective the hypervolume indicator.

	NSGAII	SMPSO	AutoNSGAII
WFG1	$4.49e - 01_{7.6e-02}$	$1.16e - 01_{7.7e-03}$	$6.34e - 01_{2.6e-05}$
WFG2	$5.64e - 01_{9.5e-04}$	$5.62e - 01_{1.2e-03}$	$5.65e - 01_{5.1e-05}$
WFG3	$4.41e - 01_{3.8e-04}$	$4.41e - 01_{2.2e-04}$	$4.42e - 01_{1.1e-05}$
WFG4	$2.17e - 01_{7.6e-04}$	$2.03e - 01_{2.4e-03}$	$2.17e - 01_{3.0e-03}$
WFG5	$1.95e - 01_{2.9e-04}$	$1.96e - 01_{7.5e-05}$	$1.96e - 01_{1.0e-04}$
WFG6	$2.03e - 01_{8.9e-03}$	$2.09e - 01_{4.3e-04}$	$2.08e - 01_{1.3e-02}$
WFG7	$2.09e - 01_{3.5e-04}$	$2.09e - 01_{3.2e-04}$	$2.11e - 01_{3.1e-05}$
WFG8	$1.48e - 01_{2.3e-02}$	$1.48e - 01_{1.0e-03}$	$1.39e - 01_{2.3e-03}$
WFG9	$2.37e - 01_{2.9e-03}$	$2.35e - 01_{8.2e-04}$	$2.39e - 01_{1.9e-03}$
DTLZ1	$4.66e - 01_{1.6e-01}$	$4.94e - 01_{1.9e-04}$	$0.00e + 00_{0.0e+00}$
DTLZ2	$2.09e - 01_{2.7e-04}$	$2.10e - 01_{1.5e-04}$	$2.11e - 01_{4.1e-05}$
DTLZ3	$0.00e + 00_{0.0e+00}$	$2.10e - 01_{6.3e-02}$	$0.00e + 00_{0.0e+00}$
DTLZ4	$2.10e - 01_{7.1e-04}$	$2.10e - 01_{1.5e-04}$	$2.11e - 01_{4.2e-05}$
DTLZ5	$2.11e - 01_{3.5e-04}$	$2.12e - 01_{1.3e-04}$	$2.12e - 01_{4.1e-05}$
DTLZ6	$1.89e - 05_{1.4e-03}$	$2.12e - 01_{6.9e - 05}$	$2.12e - 01_{5.6e-05}$
DTLZ7	$3.29e - 01_{2.8e - 04}$	$3.30e - 01_{9.8e-05}$	$3.30e - 01_{7.3e-05}$

(b) Results obtained from [115] with irace using as objective the hypervolume indicator.

[115] Antonio J. Nebro, Manuel López-Ibáñez, Cristóbal Barba-González, and José García-Nieto. "Automatic Configuration of NSGA-II with JMetal and Irace". In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO '19. Prague

2.c) Software capabilities

- Developed inside the jMetal family
- Implements 4 configurable algorithms
 - NSGA-II (dominance-based) 19 components/parameters
 - MOEA/D (decomposition-based) 25 components/parameters (Can implement the MOEAD/D-DE variant)
 - SMS-EMOA (indicator-based) 18 components/parameters
 - MOPSO (also dominance-based) 24 components/parameters
- Any jMetal algorithm can be used as meta-optimizer
- Available as maven project and Docker

2.c) Software capabilities

- Includes a graphical user interface
- Evaluated on a real world engineering problem

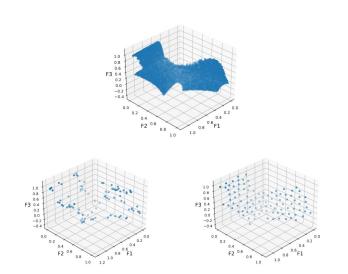
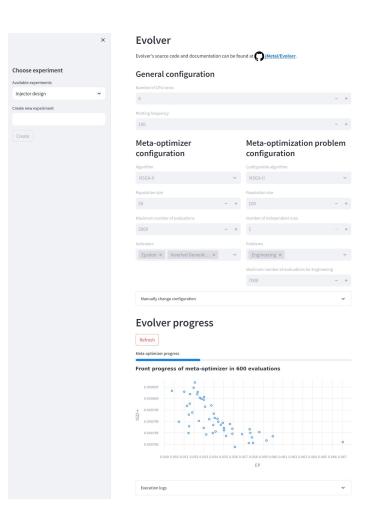



Figure 5.9: Reference front of the engineering problem (top), front obtained by NSGA-II with standard setting (bottom left), and front obtained by the auto-configured NSGA-II (bottom right).

2.c) Quality-Diversity: An alternative approach

- Ensemble theory
- Measure behavioural diversity by:
 - trajectory to the final population
 - Measured by normalized quality indicator

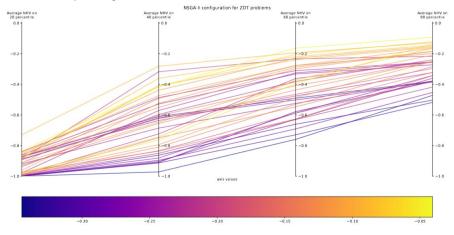


Figure 5.11: Parallel coordinates plot of the contents of a Quality-Diversity archive with 4 behavior characteristics measuring the progress of the NHV of the population of a multi-objective algorithm.

2.c) Quality-Diversity: An alternative approach

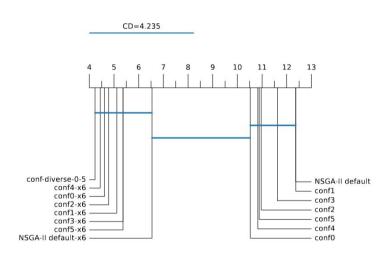


Figure 5.12: Critical distance plot ranking the obtain configurations and ensembles from the Quality-Diversity optimization process.

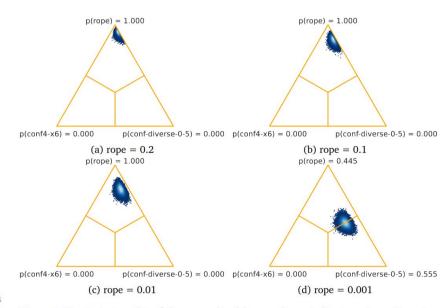


Figure 5.13: Posterior plot of the normalized hypervolume indicator using a Bayesian sign test for the top two performer ensembles with several different rope values.

2) PhD contributions

- A Semantic Approach to Standardizing Multi-Objective Optimization
- Similarity Between Multi-Objective Problems Via Landscape Analysis
- Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- Algorithmic Recommendations Based on Semantic Knowledge

Leveraging Large Language Models for the Automatic Implementation of Problems in **Optimization Frameworks**

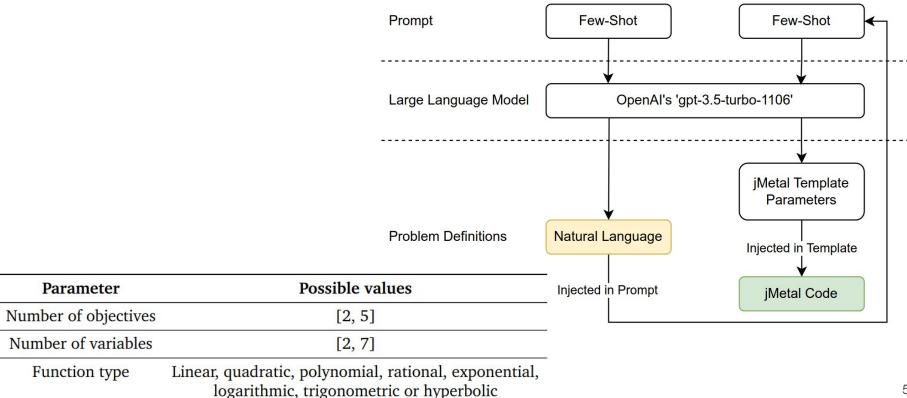
José F. Aldana-Martín*,1,2[0000-0002-4845-762X], Juan J. Durillo^{3[0000-0002-8023-6392]}, María del Mar Roldán-García^{1,2}[0000-0002-1470-2017], and Antonio J. Nebro^{1,2}[0000-0001-5580-0484]

² ITIS Software, University of Málaga, 29071, Málaga, Spain jfaldanam@uma.es, mrgarcia@uma.es, ajnebro@uma.es ³ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Germany durillo@lrz.de

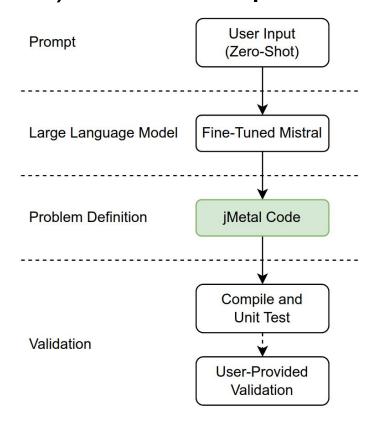
Software tool SyntheticAl -

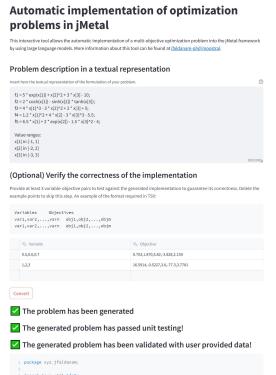
multi-objective problems

Software tool moostral -


Synthetic generator for Automatic implementation of multi-objective optimization problems leveraging LLMs

Departamento de Lenguajes y Ciencias de la Computación. University of Málaga, 29071 Málaga, Spain


2.d) Motivation


- Optimization frameworks provide software packages with everything required for working with metaheuristics.
- Domain experts often lack the technical skill to implement their optimization problems according to the specific rules of an optimization framework.

2.d) Synthetic problem generation

2.d) Automatic problem implementation

4 import org.uma.jmetal.problem.doubleproblem.impl.AbstractDoubleProblem;

5 import org.uma.jmetal.solution.doublesolution.DoubleSolution
6
7 public class ProblemY extends AbstractDoubleProblem {
8 /* Generated code cut for clarity */

2.d) Evaluation: On real world problems

Problem	Discipline	Source
Design of honeycomb heat sinks	Structure engineering	[146]
Vehicle crashworthiness design	Structure engineering	[92]
Development of liquid-rocket single element injector	Structure engineering	[56, 153]
Production of synthesis gas	Chemical engineering	[52]
Performance of packed bed latent heat thermal storage	Materials engineering	[53]
Ultrahigh-strength steel milling parameters	Materials engineering	[163]
Development of water and oil repellent fabric	Materials engineering	
Machining of wire electrical discharge	Electronics engineering	[119]
Design of ultra-wideband antenna	Electronics engineering	[26]

Got 9 correct, failed on [53] as the formulas that define the problem are very long (>2200 tokens)

2.d) Evaluation: Natural described language

User input:

Implement a multi-objective optimization problem where the first objective is the negative square root of the first variable, a second objective that is the sum of the sine of each of the variables minus six and a half, and a third objective that is the first variable minus the third one. The range of feasible values for each variable is between $-\pi$ and π .

Showcases the strong reasoning capabilities of Large Language Models

Generated implementation:

```
package xyz. ifaldanam;
import java.util.List;
import org.uma.jmetal.problem.doubleproblem.impl.AbstractDoubleProblem;
import org.uma.jmetal.solution.doublesolution.DoubleSolution;
public class ProblemY extends AbstractDoubleProblem {
 /** Constructor */
  public ProblemY() {
    int numberOfVariables = 3;
    numberOfObjectives (3);
    numberOfConstraints(0);
    name("ProblemY");
    List < Double > lowerLimit = List.of(-Math.PI. -Math.PI. -Math.PI):
    List < Double > upperLimit = List.of(Math.PI, Math.PI, Math.PI);
    variableBounds (lowerLimit, upperLimit);
  /** Evaluate() method */
  @Override
  public DoubleSolution evaluate (DoubleSolution solution) {
    double x1 = solution.variables().get(0);
    double x2 = solution.variables().get(1);
    double x3 = solution.variables().get(2);
    solution.objectives()[0] = -Math.sqrt(x1);
    solution.objectives()[1] = (Math.sin(x1) + Math.sin(x2) +
        Math. sin(x3)) - 6.5;
    solution.objectives()[2] = x1 - x3:
    return solution:
```

2) PhD contributions

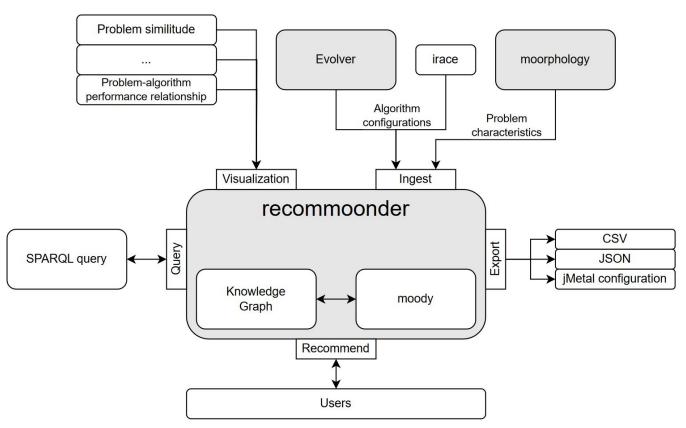
- a. A Semantic Approach to Standardizing Multi-Objective Optimization
- b. Similarity Between Multi-Objective Problems Via Landscape Analysis
- c. Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- d. Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- e. Algorithmic Recommendations Based on Semantic Knowledge

2) PhD contributions

- a. A Semantic Approach to Standardizing Multi-Objective Optimization
- b. Similarity Between Multi-Objective Problems Via Landscape Analysis
- c. Automatic Generation of Quality Algorithmic Configurations for Metaheuristics
- d. Leveraging Large Language Models for the Automatic Implementation of Optimization Problems
- e. Algorithmic Recommendations Based on Semantic Knowledge

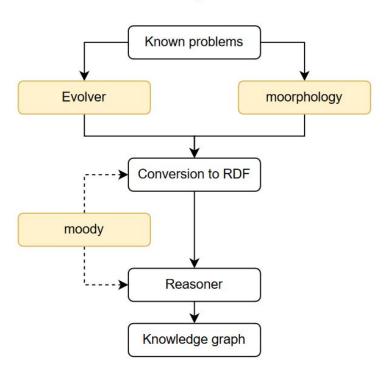
Software tool

recommoonder -

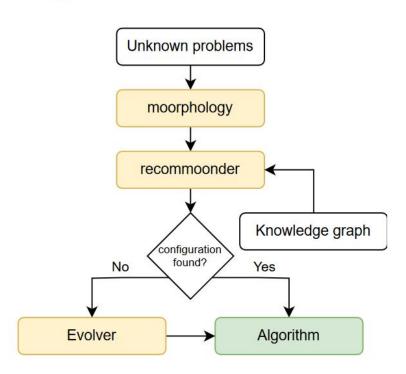

Algorithmic recommender for multi-objective optimization based on semantic technologies

2.e) Motivation

Answering the main hypothesis formulated in this PhD thesis.


"Given previous knowledge on the relationship between a specific algorithmic configuration and the quality of the result of said algorithm solving a problem and given a similitude metric between two problems, it is possible to provide recommendations to non-expert users to choose an algorithmic configuration to efficiently solve a specific problem."

2.e) Software architecture



2.e) Software interfaces

Data ingestion

Algorithmic recomendation

2.e) Evaluation of the recommendation system

Evaluated on known problems

• If we ask for a previously known problem, will I get the best configuration available?

Evaluated on unknown problems

• If we ask for never seen before problems, will I get the a configuration than beats the default configuration?

2.e) Evaluation of the recommendation system

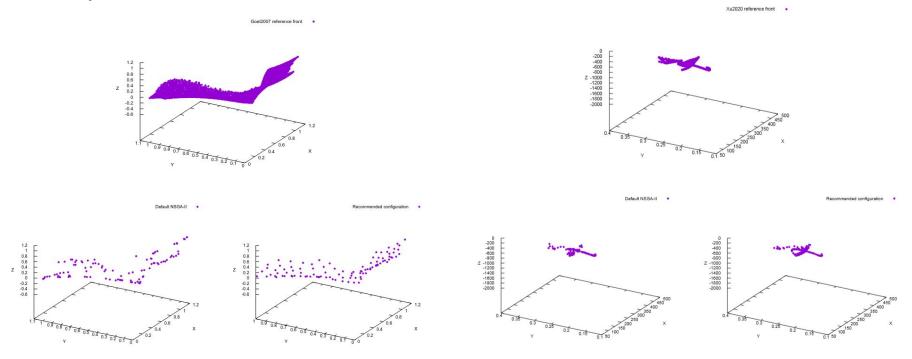
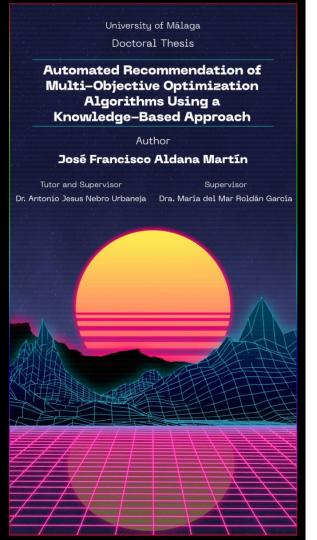


Figure 7.6: Reference front of Goel2007 (top), front obtained by NSGA-II with standard setting (bottom left), and front obtained by *recommonder* (bottom right).

Figure 7.8: Reference front of Xu2020 (top), front obtained by NSGA-II with standard setting (bottom left), and front obtained by *recommonder* (bottom right).

3) Conclusions and future work


- a. Conclusions
- b. Future work

3.a) Conclusions and future work: Conclusions

- All 6 objectives for this PhD have been completed
- 2 papers in journal and 1 in international conference
 - 1 more paper journal article under review
- 7 open-source software packages
 - 1 open-source fine-tuned LLM
- A 3-month International research stay at the Big Data Artificial Intelligence team (BDAI) at the Leibniz Supercomputing Centre (LRZ) in Munich.
- 5+ research projects at Khaos Research
 - 3 more articles in journals and 1 book chapter

3.b) Conclusions and future work: Open research lines

- moody's extension by including new metaheuristics and problems including new branches like discrete optimization and real world problems.
- In moorphology, an in-depth analysis on what is the optimal set of characteristic for algorithmic recommendation and how they relate to the similitude between problems.
- On the auto-configuration of algorithms, more experimentation on reducing the computational budget while still obtaining configuration with good performance when evaluated on a realistic budget.
- Adapting Evolver to support optimization problems with unknown Pareto front.
- Improving moostral by training the LLM to generate output of other popular frameworks like PlatEMO o Pagmo.
- Continuing the evaluation of Quality-Diversity optimization on real world problems.

Automated Recommendation of Multi-Objective Optimization Algorithms Using a Knowledge-Based Approach

Doctoral thesis

José Francisco Aldana Martín

Any questions?

